
Matricola n. 0000758395

Alma Mater Studiorum

Università Di Bologna

Dipartimento Scienze Giuridiche

Corso Di Laurea Magistrale In Giurisprudenza

Uso del software libero e open source per l’analisi

scientifica della prova digitale nell’informatica forense

Tesi di laurea in Informatica Forense

Relatrice:

Prof.ssa Raffaella Brighi

Presentata da:

Luca Piras

Sessione unica

Anno Accademico 2023/2024

Indice

Ringraziamenti 7

Introduzione 9

1 Approccio scientifico all’informatica forense e alla prova informatica 13

1.1 Definizione di informatica forense . 13

1.2 Ambiti di rilevanza dell’informatica forense 15

1.2.1 Diritto penale sostanziale . 15

1.2.2 Diritto processuale penale . 17

1.2.3 Altre branche del diritto . 19

1.3 Problemi dell’informatica forense . 19

1.4 Rigore scientifico nell’informatica forense 22

1.5 Prova informatica e perizia . 27

2 Software libero come modello ideale per l’informatica forense 33

2.1 Esigenze del software per l’informatica forense 33

2.1.1 Acquisizione dei dati informatici 33

2.1.2 Conservazione dei dati informatici 36

2.1.3 Catena di custodia . 38

2.1.4 Analisi e valutazione dei dati informatici 40

2.1.5 Presentazione delle conclusioni e contraddittorio 43

2.2 Inquadramento legale e tecnico del software 46

3

2.2.1 Definizione di software libero 46

2.2.2 Codice sorgente e codice macchina 48

2.2.3 Software e l.d.a. 49

2.2.4 Licenze d’uso del software libero nell’ordinamento italiano . 53

2.2.5 Licenza GPL . 55

2.3 Confronto fra software proprietario e libero 57

2.3.1 Accesso al codice sorgente . 57

2.3.2 Libertà di riprodurre ed eseguire il programma 60

2.3.3 Libertà di modificare il programma 61

2.3.4 Altre caratteristiche . 62

2.3.5 Impossibilità di usare il software libero per i captatori 64

3 Sviluppo di software scientifico libero 67

3.1 Fattori di valutazione del software . 67

3.1.1 Rilevanza per i giuristi . 67

3.1.2 Linguaggio di programmazione 68

3.1.3 Documentazione del codice 69

3.1.4 Uso di codice di terze parti . 72

3.1.5 Controlli di qualità . 73

3.1.6 Riproducibilità e distribuzione del codice 76

3.2 Buone pratiche di sviluppo . 77

3.2.1 Rilevanza per i giuristi . 77

3.2.2 Progettazione del software . 78

3.2.3 Scelta di una licenza libera . 79

3.2.4 Sistemi di controllo di versione 79

3.2.5 Contribuzioni di terze parti 81

3.2.6 Sviluppo trasparente del software 83

4

4 Software libero per l’informatica forense 87

4.1 Uso del software libero nella pratica 87

4.2 Sistema operativo libero . 88

4.3 Software libero per acquisire i dati . 91

4.4 Software libero per conservare i dati 95

4.5 Software libero per analizzare i dati 96

Conclusioni 101

Bibliografia 109

5

6

Ringraziamenti

A Tyler e Jo

Desidero ringraziare i miei relatori, e tutti coloro che mi sono stati vicini durante

la conclusione del mio percorso di studi, per il vostro supporto e la vostra pazienza.

Desidero anche ringraziare gli sviluppatori dei seguenti software liberi, perché

sono stati usati per redigere la tesi:

• Emacs, Vim e Neovim – Per scrivere i file di testo.

• Git – Per la gestione dei file relativi alla tesi.

• Pandoc e TeX Live – Per la conversione della tesi in PDF.

• Okular – Per l’annotazione di file PDF.

• Borg, Restic e Rsync – Per la sincronizzazione di file, e creazione di copie di

backup.

• Debian e Arch Linux – Sistemi operativi.

• Termux, Crostini e WSL – Possibilità di eseguire applicazioni Linux su Android,

Chromebooks e Windows.

I font usati sono Libertinus Serif e Source Code Pro.

7

8

Introduzione

La materia e l’argomento di questa tesi sono stati scelti per un interesse personale

per l’informatica, la programmazione, l’uso del software libero e dei sistemi operativi

GNU/Linux.

L’obiettivo di questa tesi è di dimostrare che il software libero, o open source, è

il modello di sviluppo e distribuzione del software che più di qualsiasi altro riesce a

soddisfare le esigenze complesse dell’informatica forense.

Il primo capitolo definisce l’esatto oggetto dell’informatica forense e descrive

brevemente le circostanze che hanno portato allo sviluppo della disciplina.

Segue l’esame dei problemi che rendono l’informatica forense una disciplina

fragile:fragile: la rapidità con cui l’informatica si evolve, le difficoltà tecniche e legali

che si incontrano nello studio scientifico dei sistemi, programmi e dati informatici, e

la fragilità dei dati informatici.

Questi problemi comportano due conseguenze. La prima è l’applicazione degli

stessi metodi e dello stesso rigore che vengono utilizzati nelle scienze naturali. La

seconda è che la perizia è il mezzo di prova che deve essere preferito per il trattamento

dei dati informatici.

Il secondo capitolo descrive le fasi del trattamento della prova, e le specifiche

esigenze di natura processuale e scientifica per ciascuna di esse. In particolare, si

giunge alla conclusione che la ricerca scientifica ed il processo sono animati da principi

molto simili: il confronto fra le parti come il modo ideale per approssimare la realtà, la

necessità di motivare le proprie conclusioni, la preferenza per la trasparenza invece

9

che la segretezza.

Dato che l’informatica forense è una disciplina che trasporta la ricerca scientifica

all’interno del processo, segue che i principi appena indicati dovrebbero applicarsi

anche all’informatica forense; e dato che l’informatica forense deve necessariamente

usare programmi informatici per svolgere le proprie attività, allora è ragionevole

pensare che anche gli strumenti usati dall’informatica debbano seguire gli stessi

principi.

La seconda parte del secondo capitolo si concentra sull’inquadramento tecnico,

legale e filosofico del software. La definizione di software libero e la distinzione fra

codice sorgente e macchina diventeranno rilevanti nell’ultima parte del capitolo, ma

è importante anticiparle. Segue una discussione del rapporto fra la legge sul diritto

d’autore italiana ed il software, e come la l.d.a. in alcuni casi ostacola l’attività di

ricerca scientifica, mentre in altri la legittima e protegge. La parte si conclude con

una discussione dei contratti di licenza d’uso (che regolano i diritti che spettano a chi

riceve una copia del software) e in particolare della licenza GPL (che mediante delle

clausole particolari, riesce a garantire che il codice sorgente di un programma rimanga

sempre disponibile ai suoi utilizzatori).

L’ultima parte del capitolo riprende le caratteristiche del software liberomenzionate

in precedenza e spiega la loro importanza. Si confronta il software libero con il software

proprietario (non-libero) e si analizzano le conseguenze negative che derivano dall’uso

di quest’ultimo, ed i vantaggi che invece deriverebbero dall’uso del software libero. Si

conclude il capitolo discutendo l’impossibilità intrinseca di usare il software libero per

sviluppare i captatori informatici.

Il terzo capitolo considera gli aspetti più pratici e tecnici dello sviluppo del software

libero per l’informatica forense, ed è diviso in due parti.

Nella prima parte si indicano una serie di elementi di valutazione per argomentare

che il software sia affidabile, come la scelta del linguaggio di programmazione, la

documentazione, il corretto uso del codice di terze parti, l’uso di tecniche per garantire

10

che il software funzioni correttamente e il suo funzionamento sia riproducibile.

Nella seconda parte si elencano alcune buone pratiche relative allo sviluppo del

software libero, per dimostrare che nonostante l’apertura al pubblico, il processo di

sviluppo non è caotico, e che la trasparenza nel processo di sviluppo è preferibile alla

segretezza.

L’ultimo capitolo elenca il software libero disponibile per il trattamento della prova

nell’ambito dell’informatica forense. Si menziona l’importanza di usare un sistema

operativo libero e si elenca una serie di software liberi che sono usati nella pratica per

l’acquisizione, conservazione e analisi dei dati.

11

12

Capitolo 1

Approccio scientifico all’informatica

forense e alla prova informatica

1.1 Definizione di informatica forense

Nel tempo, sono state date numerose definizioni dell’informatica forense,1 che

iniziano con “l’informatica forense riguarda la …”, e continuano con un elenco di

attività tipiche.2

Queste definizioni presentano due problemi:

• Spesso si concentrano solo sugli aspetti tecnici e non sempre evidenziano

l’aspetto “forense” della disciplina;3

• L’uso di elenchi dà l’impressione della tassatività4 e pone problemi di

1Per un elenco, v. Antonio Gammarota, «Informatica forense e processo penale: la prova digitale tra
innovazione normativa e incertezze giurisprudenziali», Alma Mater Studiorum – Università di Bologna,
2016, http://amsdottorato.unibo.it/7723/, p. 16.

2Ad esempio, la ricerca, protezione, identificazione, estrazione, documentazione, analisi, esibizione,
conservazione, interpretazione, ecc. di mezzi di prova, prove informatiche o elettroniche, dati del
computer, ecc.

3Ossia, il fatto che le attività dell’informatica forense sono tendenzialmente destinate a confluire
all’interno di un procedimento giudiziario, e non sono semplicemente attività di studio, ricerca e analisi
fini a sé stesse, o destinate ad essere utilizzate da privati.

4È difficile immaginare in anticipo ed in astratto ogni attività tipica, ed in ogni caso, l’evoluzione
della disciplina può portare alla definizione di nuove attività tipiche.

13

http://amsdottorato.unibo.it/7723/

interpretazione.5

Questi problemi possono essere superati usando definizioni che evidenziano il

collegamento fra l’informatica ed il diritto, e fanno riferimento a concetti più generali

ed astratti, invece di usare il metodo induttivo.6

Si consideri la definizione di digital evidence7 data da Eoghan Casey8: “[A]ny data

stored or transmitted using a computer that support or refute a theory of how an offense

occurred or that address critical elements of the offense such as intent or alibi.”9

Il pregio di questa definizione è che collega esplicitamente la prova informatica

al diritto penale, ed indica la sua funzione in maniera generale.10 Il problema

fondamentale è che non indica come la prova informatica deve essere trattata, e a

quali discipline si deve fare riferimento.

La definizione di informatica forense data da A. Gammarota11 risolve il secondo

problema: “L’informatica forense studia le norme giuridiche ed le tecniche informatiche

per il trattamento dei dati digitali a fini processuali.” La definizione è breve, ma l’autore

evidenzia la necessità di interpretarla nella maniera più ampia possibile:

• “Fini processuali”: include qualsiasi procedimento decisionale in cui i dati

informatici possano assumere rilevanza;12

5Ad esempio, si può discutere se i termini “conservazione” e “protezione” significhino la stessa
cosa, oppure se la “conservazione” riguardi la creazione di copie di backup ed il controllo periodico
dell’integrità dei dati, mentre la “protezione” riguardi l’applicazione di misure di sicurezza come cifratura
e controllo degli accessi.

6Ossia, l’uso di una lista aperta di elementi, che si conclude con un’espressione come “e simili”.
7Prova informatica.
8Digital Evidence and Computer Crime: Forensic Science, Computers, and the Internet , USA, Academic

Press, Inc., 2011, p. 7.
9Qualsiasi dato archiviato o trasmesso per mezzo di un computer che corrobora o confuta una teoria

su come si sia verificato un reato, o che riguarda gli elementi più importanti del reato, come il movente
o l’alibi.

10L’elenco al termine della definizione ha una finalità puramente illustrativa, e non definitoria.
11Op. cit., pp. 26–27.
12Pertanto, non solo il processo e procedimento penali, ma anche quelli civili, amministrativi, tributari,

ecc. Se le regole valgono per il processo che incide in maggiore misura sui diritti fondamentali della
persona, a maggiore ragione devono valere per tutti gli altri tipi di processo.

14

• “Trattamento”: significa la corretta gestione del dato informatico per qualsiasi

fine,13 e in qualsiasi momento;14

• “Norme giuridiche”: significa qualsiasi norma che, anche se solo indirettamente

o in maniera condizionata, può riguardare l’uso di dati informatici;

• “Tecniche informatiche”: riguardano l’intera disciplina dell’informatica.15

1.2 Ambiti di rilevanza dell’informatica forense

1.2.1 Diritto penale sostanziale

L’impulso più forte allo sviluppo dell’informatica forense è stata la informatizzazione

della società, e conseguentemente, l’uso di strumenti informatici per commettere reati.

La particolarità degli strumenti informatici è che permettono anche ad un singolo

individuo di causare danni enormi.16

Il problema fondamentale era la possibilità di reprimere queste nuove forme

13Le regole sul trattamento dei dati non valgono solo all’interno dei procedimenti decisionali, ma
anche per garantire il corretto trattamento dei dati informatici come atti giuridici. Ad esempio, si
consideri come l’uso di firme elettroniche fanno fede fino a prova contraria (art. 20 co. 1-ter CAD). L’uso
e verifica delle firme digitali interessa all’informatica forense, anche se l’atto non sarà presumibilmente
usato in un procedimento giudiziario.

14Anche prima dell’intervento del personale specializzato (ad esempio, la PG deve assicurare le fonti
di prova; art. 55 co. 1 c.p.p.), e anche dopo la conclusione definitiva del procedimento (si pensi ai casi di
impugnazioni straordinarie).

15Non solo il mondo accademico, ma anche l’attività di ricerca libera e non formalizzata svolta
dall’industria, da ricercatori indipendenti, dai pratici della disciplina (v. A. Gammarota, op. cit., p. 34),
e le best practices (migliori prassi) che vengono pubblicate da enti nazionali, e da organizzazioni
internazionali e sovranazionali (ad esempio, esistono una serie di standard ISO/IEC relativi al trattamento
della prova informatica ed investigazione dei dati digitali, v. A. Gammarota, ivi, p. 27–28.

16Ad esempio, si pensi al Morris worm, che in 24 ore riuscì a diffondersi sul 10% dei 60.000 computer
allora connessi a internet. L’obiettivo del worm non era di distruggere dati, ma di causare quello che oggi
sarebbe chiamato un denial of service attack (attacco per l’interruzione del servizio). V. Federal Bureau of
Investigation, The Morris Worm, 2018, https://www.fbi.gov/news/stories/morris-worm-30-years-since-
first-major-attack-on-internet-110218. Ancora, si pensi alla distribuzione di materiale protetto dal diritto
d’autore o di materiale pedo-pornografico mediante tecnologie peer-to-peer (v. Michele Ferrazzano,
«Indagini forensi in tema di scambio di file pedopornografici mediante software di file sharing a mezzo
peer-to-peer», Alma Mater Studiorum – Università di Bologna, 2014, http://amsdottorato.unibo.it/6697/,
p. 99 ss.), dove una singola persona può distribuire quel materiale ad un numero potenzialmente
illimitato di altri utenti.

15

https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-110218
https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-110218
http://amsdottorato.unibo.it/6697/

di criminalità.17 In molti casi era possibile qualificare il fatto commesso mediante

un sistema informatico all’interno dei reati tradizionali.18 Tuttavia, in alcuni casi

questa operazione non era possibile19 e gli stati iniziarono a dotarsi di leggi sui reati

informatici.

Negli Stati Uniti, la prima legge fu approvata in Florida nel 1978 e quasi tutti gli

altri Stati si dotarono di proprie leggi nel corso di poco più di un decennio.20 In Italia,

il codice penale viene riformato nel 1993.21

È possibile distinguere fra due tipi di reato, in base al bene giuridico protetto.22

Nei reati informatici “propri”, il bene (o uno dei beni) protetti sono i dati o sistemi

informatici.23 Per la prova di questo tipo di reati, è assolutamente necessario acquisire

i dati informatici.24

Nei reati informatici “impropri”, i dati e sistemi informatici sono lo strumento con

cui il reato è commesso, e non il bene protetto.25 In questo caso, il reato non deve

17Il principio fondamentale del diritto penale è il principio di legalità, nullum crimen sine lege (nessun
reato può esistere senza una legge).

18Ad esempio, negli Stati Uniti il fatto che i dati informatici avessero natura intangibile ed immateriale
era irrilevante: che avevano comunque un valore economico, e pertanto si potevano applicare le figure
di reato tradizionali; v. Hugh Nugent, «State Computer Crime Statutes», 1991, https://www.ojp.gov/nc
jrs/virtual-library/abstracts/state-computer-crime-statutes, p. 2.

19Secondo alcune corti, questa interpretazione estensiva dei reati tradizionali sconfinava nella
creazione di nuove figure di reato da parte dei giudici, che andava a violare i principi costituzionali del
due process of law (giusto processo), o della separazione dei poteri. In altri casi, i reati commessi con
strumenti informatici non potevano essere ricondotti alle figure di reato tradizionali, e pertanto era
necessario crearne di nuove.

20H. Nugent, op. cit., pp. 2–4.
21La Legge 23 dicembre 1993, n. 547 (“Modificazioni ed integrazioni alle norme del codice penale e del

codice di procedura penale in tema di criminalità informatica.”) modifica i reati tradizionali, aggiungendo
riferimenti espliciti ai sistemi informatici e telematici, ed i dati e programmi in essi contenuti. V. A.
Gammarota, op. cit., p. 71.

22La distinzione è ripresa da A. Gammarota, ivi, p. 29.
23Ad esempio, nel danneggiamento di informazioni, dati e programmi informatici (art. 635-bis c.p.)

l’unico bene protetto sono i dati in sé, mentre nella frode informatica (art. 640-ter c.p.) si protegge
sia il corretto funzionamento del sistema informatico, sia il patrimonio della persona (ad esempio,
i ransomware sono un caso di frode informatica, perché criptano i dati e programmi degli utenti,
impedendone l’uso e accesso, e richiedono il pagamento di un riscatto per decriptarli).

24Altrimenti, sarebbe impossibile provare che il sistema informatico è stato aggredito dal reato.
25Ad esempio, si penis ad una truffa (art. 640 c.p.) dove gli “artifizi e raggiri” vengono creati mediante

l’uso di sistemi informatici, come la clonazione della voce di una persona. V. A. Kohli, From Scams
to Music, AI Voice Cloning Is on the Rise, 2023, https://web.archive.org/web/20230429203350/https:
//time.com/6275794/ai-voice-cloning-scams-music/.

16

https://www.ojp.gov/ncjrs/virtual-library/abstracts/state-computer-crime-statutes
https://www.ojp.gov/ncjrs/virtual-library/abstracts/state-computer-crime-statutes
https://web.archive.org/web/20230429203350/https://time.com/6275794/ai-voice-cloning-scams-music/
https://web.archive.org/web/20230429203350/https://time.com/6275794/ai-voice-cloning-scams-music/

essere necessariamente provato usando i dati informatici.26

Più in generale, i dati informatici possono essere utili per l’accertamento di qualsiasi

altro reato.27

La definizione dei reati informatici getta le basi per lo sviluppo dell’informatica

forense, perché per la loro prova può essere necessario, o comunque utile, trattare i

dati informatici.28 Allo stesso tempo, l’informatica forense è utile per meglio definire

ed interpretare i reati informatici, ed i beni giuridici protetti.29

1.2.2 Diritto processuale penale

Il diritto processuale penale disciplina le modalità di trattamento delle prove30 e

dei mezzi di ricerca della prova.31 Dato che l’introduzione dei reati informatici è un

fenomeno estremamente recente, la cultura processuale ha dovuto adattare gli istituti

tradizionali, pensati per prove materiali, ai dati informatici, che invece hanno una

natura e caratteristiche diverse.

Negli Stati Uniti la cultura processuale è stata sempre aperta alla discussione

dei principi, strumenti e metodologie scientifiche usate per ricostruire e valutare il

fatto all’interno del contraddittorio, e questo adattamento non ha incontrato difficoltà.

Viceversa, in Italia la cultura processuale preferisce l’uso delle prove precostituite alle

26Perlomeno, almeno in teoria non è strettamente necessario doverli acquisire per poter provare
il fatto, ma naturalmente, la ricostruzione del fatto sarebbe agevolata avendo a disposizione più
informazioni possibile.

27Ad esempio, si pensi al caso di un reato commesso da più persone, che usano gli strumenti informatici
al solo fine di comunicare fra di loro. Il reato può essere sicuramente provato in altri modi, ma queste
informazioni sono comunque utili per dimostrare la responsabilità dei vari soggetti.

28È preferibile usare sempre la massima cautela nel trattamento dei dati, anche se si pensa di usarli
solo come elementi per orientare le indagini, perché i dati informatici sono estremamente fragili, e
possono essere modificati o cancellati con facilità.

29L’informatica forense aiuta il legislatore a rispettare il principio di tassatività, per cui i reati devono
essere descritti in maniera chiara e precisa, specie se fanno riferimento a nozioni tecniche, ed il principio
di offensività, per cui i reati devono proteggere i beni giuridici solo dalle modalità di aggressione più
gravi.

30Le modalità con cui le prove devono essere assunte (che devono rispettare i diritti fondamentali
della persona), e le sanzioni processuali nel caso in cui queste modalità vengano violate.

31Chi può ricercare le prove, secondo quali modalità e limiti, le sanzioni nel caso di violazione della
disciplina.

17

prove costituende.32

La preferenza per le prove precostituite pone due rischi. Il legislatore non può

prevedere regole e cautele particolari per la loro assunzione, ed eventuali sanzioni per

la violazione di queste regole,33 e il giudice potrebbe ritenere che non sia necessario

l’intervento di un perito o consulenti tecnici per la corretta assunzione e valutazione

della prova.34

La legge di ratifica35 della Convezione di Budapest del 200136 ha cercato di porre

rimedio a questa situazione introducendo dei principi per il trattamento dei dati

informatici all’interno del codice di procedura.

Tuttavia, questo intervento può essere criticato, perché è limitato solo ad alcuni

istituti (principalmente i mezzi di ricerca della prova)37 e non sono previste sanzioni

processuali per la violazione di quei principi.38

32Ossia, si preferiscono le prove di natura documentale, che si formano al di fuori del processo,
rispetto alle prove che si formano all’interno del dibattimento. V A. Gammarota, op. cit., pp. 11–12,
22–23

33Ad esempio, si consideri la disciplina minuziosa prevista per la ricognizione di persone. Un intero
articolo è dedicato agli atti preliminari, si prevede l’esecuzione e la menzione di questi adempimenti nel
verbale a pena di nullità, e gli articoli successivi regolano lo svolgimento, e altri tipi di ricognizione
(artt. 213–216 c.p.p.). Il legislatore sa che la memoria umana è labile, e quindi istituisce una disciplina
articolata per una prova che si fonda interamente sul riconoscere qualcuno o qualcosa, a distanza di
tempo.

34Ad esempio, si potrebbe argomentare che un documento in formato PDF non sia troppo diverso da
un documento cartaceo, e quindi che possa essere acquisito e valutato come qualsiasi altro documento.
Tuttavia, questa ricostruzione è eccessivamente semplicistica, perché ignora le problematiche tecniche
relative alla corretta copia di un documento informatico, alla presenza di modifiche che non sono
immediatamente apparenti, etc.

35Legge 18 marzo 2008, n. 48, “Ratifica ed esecuzione della Convenzione del Consiglio d’Europa sulla
criminalità informatica, fatta a Budapest il 23 novembre 2001, e norme di adeguamento dell’ordinamento
interno.”

36Convention on Cybercrime (ETS No. 185), v. https://rm.coe.int/1680081561.
37Lemodifiche riguardano le ispezioni (art. 244), perquisizioni (art. 247), il sequestro di corrispondenza

(art. 254 e 254-bis), la custodia delle cose sequestrate (art. 259), le perquisizioni in caso di flagranza o
evasione (art. 352) e gli accertamenti urgenti (art. 354). Il legislatore evidenzia la necessità di conservare
i dati originali, impedire la loro modificazione, e copiarli con procedure che garantiscano che la copia
dei dati sia identica all’originale. È importante disporre le massime garanzie nella fase iniziale, perché
se i dati sono acquisiti incorrettamente, tutte le fasi successive saranno viziate a loro volta, e ancora
peggio, potrebbe essere impossibile acquisire i dati di nuovo, perché sono stati modificati. Tuttavia,
sarebbe stato opportuno prevedere dei principi anche per gli istituti relativi alle prove, come ad esempio,
un divieto di acquisire documenti informatici, se non si dimostra che sono stati acquisiti secondo gli
stessi principi previsti per il loro sequestro (art. 254-bis c.p.p.).

38Pertanto, si corre il rischio che la fase del dibattimento venga contaminata da prove assunte

18

https://rm.coe.int/1680081561

1.2.3 Altre branche del diritto

I principi, le tecniche e le conoscenze dell’informatica forense possono trovare

applicazione anche nelle altre branche del diritto, ogni volta che il trattamento dei

dati informatici diventa rilevante per il compimento di una qualsiasi operazione che

produce effetti giuridici,39 come la dimostrazione della responsabilità,40 l’applicazione

di sanzioni41 e l’adozione di atti che producono effetti giuridici.42 Inoltre, devono anche

essere applicate agli atti giuridici in formato digitale.43

1.3 Problemi dell’informatica forense

L’informatica forense è una disciplina che presenta una serie di caratteristiche

particolari, che possono farla apparire instabile o fragile.

Un primo problema è la continua e rapida evoluzione delle tecnologie informatiche,

sia a livello di hardware che di software.44 Pertanto, i metodi di analisi tendono ad essere

incorrettamente. Il giudice dovrebbe dichiarare quelle prove se non inammissibili (per mancanza di
una sanzione espressa), almeno inaffidabili, ma la sua valutazione delle altre prove potrebbe essere
comunque falsata dalla presenza delle prove informatiche.

39È irragionevole pensare che gli standard stringenti dell’informatica forense debbano trovare
applicazione solo all’interno del diritto penale, perché è la branca del diritto che più di tutte va a
incidere sui diritti fondamentali della persona. L’informatica forense prevede quegli standard perché i
dati informatici hanno delle caratteristiche intrinseche particolari che li necessitano, e pertanto, devono
essere sempre trattati allo stesso modo, indipendentemente dal contesto in cui vengono usati.

40Ad esempio, si immagini l’uso di dati informatici come prove in un giudizio civile, amministrativo,
tributario, ecc.; oppure nelle procedure di ADR (alternative dispute resolution, risoluzione alternativa
delle controversie) come l’arbitrato

41Ad esempio, i procedimenti disciplinari nei confronti di dipendenti della PA, avvocati, sportivi, ecc.
42Ad esempio, si pensi all’istruttoria nel procedimento amministrativo, finalizzata all’emanazione di

un atto. È importante garantire almeno la corretta acquisizione e conservazione dei dati informatici che
saranno usati ai fini della decisione.

43Ad esempio, nel processo telematico gli atti stessi del processo sono rappresentati come dati
informatici, ed è estremamente importante dimostrare l’autenticità mediante l’uso di firme digitali,
garantire la loro corretta conservazione, ed essere in grado di rilevare eventuali modificazioni. Lo stesso
ragionamento vale anche per qualsiasi atto con valore giuridico che si forma e ha rilevanza all’esterno
del processo, specie se quell’atto potrebbe formare in seguito oggetto di controversia (ad esempio,
atti della PA, o contratti fra privati). Maggiori sono le cautele utilizzate, e maggiore è l’affidabilità di
quell’atto.

44Nell’ambito delle scienze naturali, i fenomeni naturali non cambiano, cambiano solo le teorie ed i
modelli che gli scienziati sviluppano per spiegarli. Viceversa, nell’ambito dell’informatica forense, i
supporti, sistemi, programmi e dati informatici sono in continua evoluzione.

19

sempre innovativi, e nel tempo necessario per svolgere una peer review approfondita,

potrebbero già essere diventati obsoleti.45

Un altro problema è che l’attività di ricerca non è libera, ma è vincolata da vari

tipi di limiti: materiali,46 tecnici,47 relativi alla documentazione,48 e legali.49

L’ultimo problema è la fragilità dei dati informatici: è difficile prevenire, rilevare o

annullare la loro dispersione o modifica, che sia accidentale o intenzionale.

Per quanto riguarda le modifiche accidentali, la conservazione e trasmissione

dei dati richiede sempre una modifica della realtà materiale,50 e pertanto,

45Il problema è aggravato dal fatto che il sistema operativo ed il software vengono spesso aggiornati
in maniera automatica all’ultima versione, senza l’intervento dell’utente, per esigenze di sicurezza
informatica. Pertanto, anche se i dati che sono stati acquisiti in un certo momento non varieranno nel
tempo, la ricerca scientifica potrebbe non avere ancora a disposizione strumenti comprovati e maturi
per analizzarli.

46I supporti materiali su cui i dati sono memorizzati potrebbero non essere rimovibili (è il classico
caso degli smartphone, o di altri dispositivi creati per uno scopo particolare, come gli apparecchi
elettromedicali) o potrebbero usare interfacce proprietarie. In entrambi i casi, l’estrazione dei dati dal
dispositivo potrebbe essere impossibile o fortemente limitata.

47Anche laddove sia possibile acquisire tutti i dati da un dispositivo, è possibile che il software usato
da quel dispositivo usi misure di protezione tecniche per rendere più difficile la sua analisi. Ad esempio,
tecniche come la crittografia, code obfuscation, ecc., che complicano lo studio del funzionamento del
software.

48Il funzionamento dei programmi ed il formato dei dati spesso non sono documentati pubblicamente.
La documentazione potrebbe essere fornita solo a sviluppatori di terze parti, ma solo a discrezione
degli sviluppatori originali, e comunque con un vincolo di NDA (non-disclosure agreement, accordo
di riservatezza), in modo che queste informazioni non possano essere condivise con il pubblico.
Tuttavia, anche se questa documentazione viene fornita, potrebbe essere incompleta o inadeguata
per i fini specifici delle investigazioni di informatica forense, che mirano ad accertare l’integrità (non-
manomissione) dei dati, e ricostruire le dinamiche che hanno portato ad un certo assetto dei dati. È
molto probabile che le specifiche tecniche dei file e protocolli siano documentati in dettaglio, ma è meno
probabile che il funzionamento del sistema operativo e dei programmi (quali file aprono, modificano,
creano od eliminano durante il loro funzionamento, come i file vengono modificati, a quali condizioni,
in che formato, ecc.) siano oggetto di descrizione. Pertanto devono essere ricostruiti con un lungo,
dispendioso, e potenzialmente inaffidabile processo di tentativi ed errori.

49In ogni caso, istituti come il diritto d’autore, la disciplina relativa ai brevetti e ai segreti industriali,
etc. possono porre dei limiti all’attività di ricerca scientifica. Ad esempio, possono limitare la possibilità
di creare copie del software oggetto di studio, di rimuovere mezzi di protezione per studiare meglio
il software, di re-implementare il funzionamento del software per creare uno strumento di analisi,
possono giustificare il rifiuto di fornire informazioni sul funzionamento del software, ecc.

50La modifica può anche essere di breve durata, o riguardare un’area limitata, ma deve comunque
essere misurabile. Se così non fosse, i dati digitali sarebbero completamente immateriali e immaginari.
Ad esempio, le modalità di trasmissione senza fili (Bluetooth, Wi-Fi, ecc.) hanno un raggio utile limitato,
al di fuori del quale la trasmissione diventa impossibile, ed i dati che vengono trasmessi smettono di
esistere se la trasmissione viene interrotta. Ancora, i dati nella memoria RAM sono memorizzati, non
trasmessi, ma si disperdono appena il sistema viene spento.

20

qualsiasi problema nella realtà materiale si riflette sui dati. Il deterioramento51 del

supporto materiale comporta la graduale perdita di funzionalità del supporto.52 Il

malfunzionamento53 può dipendere da cause “naturali”54 o cause “meccaniche”.55

Per quanto riguarda le modifiche intenzionali, in linea teorica, se è possibile entrare

in possesso del supporto, è anche possibile modificare i suoi contenuti. La distruzione

integrale di tutti i dati mediante sovrascrittura è considerata irreversibile.56 La modifica

arbitraria di contenuti specifici del disco57 è più complessa, e può essere rilevata

mediante l’uso di varie tecniche.58

51Inteso come il processo naturale, inevitabile ed irreversibile per cui tutta la materia tende
progressivamente verso il disordine.

52Nell’ipotesi migliore, il sistema rileva la presenza di settori corrotti che sono diventati illeggibili, lo
comunica all’utente, ed in alcuni casi, cerca di ripristinare i dati. Ad esempio, se si hanno due dischi
configurati in modo da usare lo schema di archiviazione RAID 1, entrambi i dischi contengono una
copia identica dei dati. Se un settore è corrotto su un disco, è possibile recuperare i dati dall’altro disco.
Nei casi più gravi, il sistema non si accorge che un settore è corrotto, e restituisce un dato errato senza
informare l’utente. Nel caso peggiore, l’intero supporto non viene più riconosciuto dal sistema. A quel
punto, è necessario utilizzare tecniche particolarmente invasive per cercare di recuperare i dati, che
richiedono lo smontaggio irreversibile del supporto materiale, ed in ogni caso, pongono problemi dal
punto di vista della loro affidabilità.

53Inteso come un fenomeno estremamente raro da un punto di vista statistico, per cui un supporto
non deteriorato si comporta in maniera erronea.

54Come i bit flip (inversione di singoli bit) dovuta a raggi cosmici. V. T. Long, This Week in Glean:
What Flips Your Bit?, 2022, https://web.archive.org/web/20220413132337/https://blog.mozilla.org/data/
2022/04/13/this-week-in-glean-what-flips-your-bit/.

55Come gli unrecoverable read errors (errori di lettura irrimediabili) che sono dovuti al fatto che il
supporto materiale è pur sempre un oggetto imperfetto, che può occasionalmente compiere errori. V. T.
Pott, I. Thomson, Flash banishes the spectre of the unrecoverable data error, 2015, https://web.archive.or
g/web/20200707202632/https://www.theregister.com/2015/05/07/flash_banishes_the_spectre_of_the_u
nrecoverable_data_error/.

56V. Daniel Feenberg, «Can Intelligence Agencies Read Overwritten Data?», 2013, https://back
.nber.org/sys-admin/overwritten-data-guttman.html. Tradizionalmente si raccomandava l’uso
di numerosi passaggi (v. Peter Gutmann, «Secure Deletion of Data from Magnetic and Solid-State
Memory», 1996, https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/g
utmann/index.html), ma successivamente è stato dimostrato che è sufficiente un singolo passaggio, che
imposta tutti i bit a zero (v. Miles Wolbe, «Can data be recovered from a zero-filled hard drive?», 2018,
https://tinyapps.org/docs/recovering_data_from_zero_filled_hard_drive.html).

57Ad esempio, eliminare solo alcuni file, o modificare i loro contenuti.
58La semplice eliminazione di un file non rimuove immediatamente i suoi contenuti, ma li segna solo

come spazio libero. Usando software specializzati (ad esempio, PhotoRec), è possibile esaminare le aree
del supporto segnate per ricercare file cancellati. Se il file è stato sovrascritto prima di essere eliminato
(ad esempio, con GNU shred, v. Free Software Foundation, «GNU Coreutils», 2023, https://web.archive.
org/web/20240205001115/https://www.gnu.org/software/coreutils/manual/html_node/index.html,
sez. 11.6), è possibile che una copia dei contenuti del file possa essere trovata altrove. Ad esempio, se
il file è un’immagine o un video, il sistema operativo spesso produce una thumbnail (anteprima) dei
contenuti di quel file. Sovrascrivere il file non elimina automaticamente anche l’anteprima, che è salvata

21

https://web.archive.org/web/20220413132337/https://blog.mozilla.org/data/2022/04/13/this-week-in-glean-what-flips-your-bit/
https://web.archive.org/web/20220413132337/https://blog.mozilla.org/data/2022/04/13/this-week-in-glean-what-flips-your-bit/
https://web.archive.org/web/20200707202632/https://www.theregister.com/2015/05/07/flash_banishes_the_spectre_of_the_unrecoverable_data_error/
https://web.archive.org/web/20200707202632/https://www.theregister.com/2015/05/07/flash_banishes_the_spectre_of_the_unrecoverable_data_error/
https://web.archive.org/web/20200707202632/https://www.theregister.com/2015/05/07/flash_banishes_the_spectre_of_the_unrecoverable_data_error/
https://back.nber.org/sys-admin/overwritten-data-guttman.html
https://back.nber.org/sys-admin/overwritten-data-guttman.html
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/gutmann/index.html
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/gutmann/index.html
https://tinyapps.org/docs/recovering_data_from_zero_filled_hard_drive.html
https://web.archive.org/web/20240205001115/https://www.gnu.org/software/coreutils/manual/html_node/index.html
https://web.archive.org/web/20240205001115/https://www.gnu.org/software/coreutils/manual/html_node/index.html

Per cercare di impedire questo tipo di modifiche, si possono usare delle misure di

sicurezza, che possono essere ricondotte a due grandi famiglie. Le misure di sicurezza

software59 sono efficaci solo quando il sistema è attivo60 e possono essere aggirate

con relativa facilità.61 Le misure di sicurezza hardware62 sono sempre attive, e se

implementate correttamente, sono pressoché impossibili da aggirare.63

Un’altra caratteristica dei dati informatici è il fatto che le modifiche non lasciano

tracce. Nel caso in cui le misure di sicurezza vengono aggirate, ed i dati informatici

vengono modificati, è impossibile risalire con certezza al loro stato precedente, e tutte

le ricostruzioni sono al più ipotesi.64

1.4 Rigore scientifico nell’informatica forense

Date queste premesse, potrebbe sembrare che l’informatica forense sia una

disciplina fragile ed instabile, tendenzialmente incapace di fornire elementi utili

in maniera indipendente rispetto al file. Per quanto riguarda la modifica dei file, è necessario verificare
se il sistema operativo o altre applicazioni tengono traccia dell’integrità dei file o delle operazioni
compiute mediante checksum o log files. In questi casi, è possibile confrontare se il file corrisponde o
meno a quanto ci si aspetta sulla base di questi valori di riferimento.

59Ad esempio, il software che normalmente richiede la password per accedere all’account di un
utente, o impedisce che l’utente attualmente autenticato possa visualizzare o modificare file di altri
utenti, o file gestiti dal sistema operativo.

60Se il sistema è spento, non sono in esecuzione. L’unica eccezione è la encryption-at-rest (crittografia
a riposo), dove i dati rimangono criptati (e quindi illeggibili a chiunque non conosca la chiave per
decrittarli) anche quando il sistema è spento.

61Spesso il software presenta degli errori di programmazione che possono essere oggetto di exploit
(sfruttati) per aggirare le misure di sicurezza.

62Ad esempio, il supporto si rifiuta di funzionare a meno che non venga inserita una password
mediante dei pulsanti fisici, un USB dongle, etc.

63Ad esempio, i dispositivi prodotti dalla Apple negli ultimi anni includono varie misure di sicurezza
a livello hardware, che rendono difficile manomettere il sistema operativo, o decrittare i dati dell’utente.
V. Apple Inc., «Apple Platform Security», 2022, https://help.apple.com/pdf/security/en_US/apple-
platform-security-guide.pdf, p. 7.

64Nel mondo materiale, è praticamente impossibile agire senza lasciare una qualche minima traccia,
ma nel mondo digitale, i singoli bit sono già l’unità di memoria minima. Ad esempio, sovrascrivere un
singolo bit trasforma la sequenza di caratteri “1966” in “1946” (v. A. Gammarota, op. cit., p. 62), ed è
praticamente impossibile trovare tracce di questo cambiamento. I bit adiacenti sono rimasti inalterati, e
il bit che è stato sovrascritto non mantiene traccia del suo valore precedente. Se quella data non occorre
altrove, la modifica non può essere rilevata, e anche se occorresse altrove, sorgerebbe il problema di
spiegare le incongruenze e capire quale sia la data autentica.

22

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

all’interno di un processo. Tuttavia, è proprio questa fragilità che giustifica (se non

impone) l’uso di un approccio scientifico e rigoroso.

L’informatica forense si appoggia all’informatica, che non è né una scienza sociale65

né una scienza naturale.66 Pertanto, si potrebbe dubitare della natura scientifica

dell’informatica forense.67

L’informatica è una disciplina di natura puramente teorica, ed è analoga alla

matematica: sia la matematica, sia l’informatica usano concetti astratti,68 che vengono

combinati fra di loro per mezzo di ragionamenti deduttivi69 e algoritmi.70 Entrambe

sono strumenti usati dalle altre scienze, ma non sono scienze in sé,71 data la loro natura

deduttiva. Tuttavia, è possibile argomentare che l’informatica forense72 sia una scienza

65L’informatica può essere usata dalle scienze sociali per analizzare grandi quantità di dati, ma
interessa principalmente come strumento, non come scienza. Si pensi al settore della data analytics, che
analizza enormi quantità di dati grezzi relativi ad utenti di siti internet per studiare, ed eventualmente
manipolare, fenomeni sociali (ad esempio, a quali temi gli utenti sono interessati, e come incentivarli
ad acquistare determinati prodotti), e la relativa regolazione da parte del diritto, che cerca di regolare
l’utilizzazione dei dati personali resi disponibili dagli utenti su internet, con strumenti come la GDPR.

66L’oggetto dello studio dell’informatica è l’elaborazione automatica delle informazioni, e “cosa si
può fare con l’informazione”, e non l’informazione come “fenomeno naturale”, e “come l’informazione
esiste”, che invece è oggetto di studio di altre discipline, come la fisica.

67L’aggettivo “forense” nell’espressione “informatica forense” suggerisce la sua affinità con le altre
scienze forensi, che possono essere legate sia alle scienze naturali (ad esempio, la medicina legale e la
tossicologia forense sono strettamente legate alla biologia, la balistica forense è legata alla fisica), o alle
scienze sociali (ad esempio, la criminologia e la psicologia).

68Ad esempio, la matematica usa concetti come “numeri”, “punti”, “rette”, e l’informatica usa concetti
come “bit” e “byte”, gli operatori booleani, le funzioni. In entrambi i casi, le discipline danno solo una
definizione assiomatica di questi concetti, e non si preoccupano di studiare come rappresentarli nella
realtà materiale.

69Un teorema è un ragionamento logico che è sempre valido, e prescinde dall’uso di osservazioni
empiriche per essere dimostrato. Ad esempio, gli Elementi di Euclide, ed il lambda calculus di Church
sono esempi di sistemi di regole create con il metodo deduttivo. Viceversa, le scienze naturali usano un
modello induttivo, e creano un sistema di regole sulla base dell’osservazione di numerosi fenomeni
empirici.

70Gli algoritmi sono sequenze di istruzioni che non hanno un contenuto definitorio o conoscitivo,
ma solamente imperativo. Un algoritmo spiega come manipolare delle informazioni per arrivare ad
un certo risultato. Le scienze naturali cercano di definire e spiegare il funzionamento dei fenomeni
naturali.

71V. Stefan Bilaniuk, «Is mathematics a science?», 1996, http://euclid.trentu.ca/math/sb/misc/ma
thsci.html. In ultima analisi, tutte le scienze naturali sono fondate sulla matematica. Ad esempio, la
sociologia si fonda sulla psicologia, che si fonda sulla biologia, che si fonda sulla chimica, che si fonda
sulla fisica, che per ultima si fonda direttamente sulla matematica, che può essere definita la scienza
più “pura”, perché non studia né gli esseri umani, né la natura materiale, ma fenomeni completamente
astratti. V. R. Munroe, Purity, n.d., https://xkcd.com/435/.

72Intesa come l’applicazione dell’informatica per il trattamento dei dati ai fini processuali.

23

http://euclid.trentu.ca/math/sb/misc/mathsci.html
http://euclid.trentu.ca/math/sb/misc/mathsci.html
https://xkcd.com/435/

naturale a pieno titolo.

In primo luogo i supporti materiali su cui i dati sono memorizzati sono soggetti ai

fenomeni naturali, e lo studio delle scienze naturali permette di determinare le migliori

modalità per il trattamento dei supporti materiali.73

Ancora, il sistema operativo ed i programmi possono essere considerati

un “fenomeno naturale” perché le loro modalità di funzionamento non sono

immediatamente evidenti.

Nel software proprietario non si ha accesso al codice sorgente, ma è possible

studiare il suo funzionamento con le stesse tecniche che gli scienziati usano per lo

studio dei fenomeni naturali:74

• Si interagisce con il software, e si documentano le operazioni svolte, ed i risultati

osservati;75

• Si formulano delle ipotesi di leggi che descrivono il funzionamento del

fenomeno;76

• Si sottopongono le ipotesi a verificazione mediante esperimenti, e si

documentano i risultati;77

73Dato che qualsiasi danno al supporto materiale diventa anche un danno per i dati informatici in esso
contenuti, l’informatica forense smette di avere una natura puramente astratta, e viene “contaminata”
dalle scienze naturali.

74Per un esempio di un’opera che applica il metodo scientifico all’informatica forense, v. Mariagrazia
Cinti, «Quantificazione ed individuazione delle alterazioni dei dati nell’ambito di indagini di Informatica
Forense», Alma Mater Studiorum – Università di Bologna, 2011, http://amslaurea.unibo.it/2736/.

75È importante documentare in maniera dettagliata non solo le modalità d’uso del software, ma
anche le modalità con cui è stato installato e configurato, che versione si sta usando, da dove è stato
scaricato, ecc.

76Ad esempio, “data la sequenza di azioni X, il programma produce i cambiamenti Y ”. La formulazione
delle ipotesi è libera, e non segue schemi formali, ma è possibile formulare nuove ipotesi iterando
su quelle già sviluppate. V. James Blachowicz, «How Science Textbooks Treat Scientific Method: A
Philosopher’s Perspective», The British Journal for the Philosophy of Science, vol. 60, fasc. 2, 2009,
https://doi.org/10.1093/bjps/axp011, pp. 303–344, pp. 321–323.

77La fase di verificazione è particolarmente delicata. Il solo fatto che i risultati osservati confermano
l’ipotesi oggetto di esame non è sufficiente a dimostrare che l’ipotesi sia valida, perché serve anche
dimostrare che i risultati non siano dovuti a cause alternative (v. J. Blachowicz, ivi, p. 325). È la fallacia
logica di affermare il conseguente: “Se A, B; B; pertanto, A”, ma questo ignora il fatto che B potrebbe
avere altre cause oltre che A. Ad esempio, si potrebbe affermare: “Se nei programmi ci sono bug, si
arresteranno in maniera inaspettata. Windows si è arrestato inaspettatamente, pertanto Windows
deve avere un bug”. Tuttavia, se Windows si arresta anche quando esegue istruzioni estremamente

24

http://amslaurea.unibo.it/2736/
https://doi.org/10.1093/bjps/axp011

• Le ipotesi e l’esperimento vengono raffinati, in modo da cercare di creare un

esperimento controllato, un esperimento dove l’unico elemento che cambia è la

variabile che viene studiata;78

• L’esperimento viene condiviso con altri ricercatori, in modo da garantire che

sia ripetibile,79 ed i risultati siano riproducibili.80 La riproduzione dei risultati

degli esperimenti da parte di altri ricercatori rafforza la validità della prima

verificazione;81

• Al termine del processo, si arriva alla creazione di una serie di massime di

esperienza, di “leggi scientifiche” che sono state comprovate empiricamente, e

formano una “teoria” sul funzionamento di quel programma.82

Nel software libero non è necessario usare queste tecniche, perché è possible

studiare il funzionamento del software leggendo il suo codice sorgente. Tuttavia,

rimane sempre la possibilità che il codice contenga bug (errori di programmazione).83 I

bug sono studiati dai programmatori con tecniche di debugging, che sono pienamente

ispirate al metodo scientifico.84 L’informatica forense è interessata allo studio dei bug

semplici, come impostare un valore a 0, si iniziano a sospettare altre cause per l’arresto inaspettato,
tra cui l’instabilità dell’hardware dovuta ad overclocking (la sovralimentazione di un processore al fine
di aumentare le prestazioni, al costo di sacrificare il suo corretto funzionamento). V. R. Chen, There’s
an awful lot of overclocking out there, 2005, https://web.archive.org/web/20231003201601/https:
//devblogs.microsoft.com/oldnewthing/20050412-47/?p=35923.

78Nell’informatica, si parla di minimum reproducible example (minimo esempio riproducibile).
L’esperimento deve contenere la minima quantità di azioni strettamente necessarie per
raggiungere il risultato, deve contenere gli eventuali dati da fornire in input, e si deve
verificare che se eseguito più volte, produca sempre gli stessi risultati. V. Vercel.com,
https://web.archive.org/web/20220927020224/https://vercel.com/guides/creating-a-minimal-reproducible-
example, n.d., https://web.archive.org/web/20220927020224/https://vercel.com/guides/creating-a-
minimal-reproducible-example.

79Ossia, altre persone possono svolgere le stesse azioni.
80Ossia, svolgere le stesse azioni porta agli stessi risultati.
81Se un certo comportamento non può essere osservato con regolarità, non può formare la base di

teorie scientifiche. A questo fine, è estremamente importante che i ricercatori siano il più trasparenti
possibile con la loro ricerca, in modo da permettere ed agevolare un controllo diffuso delle loro teorie.

82È importante indicare che “verificare” una teoria non significa che quella teoria è necessariamente
corretta, ma solo che riesce a prevedere in maniera affidabile la realtà. La scienza non arriva mai ad
“affermare la verità”, ma solo a creare modelli che “approssimano la realtà”.

83Un bug è la situazione che si verifica quando leggendo il codice ci si aspetta il risultato X, ma
eseguendolo si ottiene il risultato Y.

84Un bug viene rilevato (osservazione), si documentano le azioni che lo causano (documentazione),

25

https://web.archive.org/web/20231003201601/https://devblogs.microsoft.com/oldnewthing/20050412-47/?p=35923
https://web.archive.org/web/20231003201601/https://devblogs.microsoft.com/oldnewthing/20050412-47/?p=35923
https://web.archive.org/web/20220927020224/https://vercel.com/guides/creating-a-minimal-reproducible-example
https://web.archive.org/web/20220927020224/https://vercel.com/guides/creating-a-minimal-reproducible-example

per valutare il loro impatto sui dati.85

Un altro elemento da considerare è l’infinita e perfetta riproducibilità dei dati

informatici oggetto di analisi. A differenza dei fenomeni naturali, o delle provemateriali,

è possibile duplicarli un numero infinito di volte senza generational loss (perdita di

qualità fra copie successive),86 ed è sempre possibile verificare l’integrità della copia

rispetto all’originale87 calcolando l’hash crittografico dei dati.88

Inoltre, dato che i dati informatici devono essere analizzati con programmi

informatici, che a loro volta sono composti di dati informatici, anche gli strumenti di

analisi sono infinitamente e perfettamente riproducibili. In linea teorica, è sempre

possibile ripetere le operazioni di analisi, ottenendo gli stessi risultati.89

si formula un ipotesi riguardo a quali istruzioni nel codice possano causare quel bug (formulazione
di ipotesi), si apportano le modifiche necessarie al codice per vedere se il bug continua a presentarsi
(verifica dell’ipotesi), e si continuano a formulare e verificare altre ipotesi fino a quando il bug viene
corretto. È buona pratica documentare, dove possibile e ragionevole, la causa del bug, in modo da evitare
una regression (situazione dove lo stesso bug che era stato già risolto si ripresenta nel futuro), ed evitare
di commettere lo stesso errore in futuro in altre parti del codice.

85Dal punto di vista dell’informatica forense, un bug non è un difetto del programma oggetto di
analisi, ma parte integrante del suo funzionamento.

86Ad esempio, si pensi a come le fotocopie di fotocopie hanno una qualità minore rispetto ad una
fotocopia dell’originale. I dati informatici sono soltanto delle sequenze di valori binari, ed è estremamente
semplice creare delle copie, e confrontarle. Se le sequenze di bit sono identiche, i dati informatici sono
indistinguibili ed equivalenti, e non è possibile distinguere fra l’originale e la copia.

87L’integrità della copia va verificata subito dopo la sua creazione, e periodicamente nel corso del
tempo.

88In inglese, to hash significa “sminuzzare”. Un algoritmo di hash “sminuzza” un file, nel senso che
il file viene diviso letto come una serie di blocks (“blocchi”, tranche), che vengono progressivamente
ricombinati fra di loro per generare un digest (riassunto) dei dati originali, che ha una lunghezza fissa e
breve (128 bit per MD5, 160 bit per SHA-1). La prima proprietà degli hash è che gli stessi dati in entrata
producono sempre lo stesso hash in uscita. Si può verificare che due sequenze di bit sono identiche
calcolando e confrontando il loro hash. La seconda proprietà degli hash è che cambiare anche un singolo
bit nei dati in entrata cambierà (in media) la metà dei bit in uscita. Pertanto, anche la minima differenza
fra due sequenze di bit produrrà hash completamente diversi. È una buona pratica usare almeno due
hash, in modo da avere più valori di riferimento per verificare l’integrità dei dati.

89Nella pratica esistono alcune limitazioni. Ad esempio, l’uso degli strumenti di analisi potrebbe
essere collegato ad una licenza, e quindi anche se si crea una copia del programma, solo un utente
potrebbe utilizzarla. Ancora, mentre è sempre possibile copiare i programmi, potrebbe non essere
possibile eseguirli su sistemi operativi o hardware più recente, a causa di incompatibilità. Al di fuori
di questi casi-limite, nel caso in cui ripetere la stessa analisi (con gli stessi dati, gli stessi strumenti, lo
stesso sistema, la stessa configurazione, ecc.) produca risultati diversi, sarà compito dei tecnici spiegare
le differenze, e compito del giudice decidere come valutare i risultati.

26

1.5 Prova informatica e perizia

Spesso si parla di “prova scientifica” e “prova informatica”, ma sono espressioni

improprie. Sarebbe più corretto parlare di “prova fondata su teorie scientifiche”, e

“prova che ha ad oggetto dati informatici”.

La perizia è il mezzo di prova ideale per l’introduzione di conoscenze scientifiche

all’interno del processo, e dato che l’informatica forense può essere considerata una

scienza che studia il trattamento dei dati informatici, si può affermare che la prova

informatica tende a coincidere con la perizia. Secondo il codice di procedura penale:90

La perizia è ammessa quando occorre svolgere indagini o acquisire dati o

valutazioni che richiedono specifiche competenze tecniche, scientifiche o

artistiche.

È preferibile interpretare la disposizione in maniera estensiva, in modo da poter

usare la perizia nel maggior numero di casi possibili: il trattamento dei dati informatici

può essere sicuramente considerato una situazione che richiede “competenze tecniche”

e “scientifiche”91 e l’espressione “è ammessa” va interpretata come “deve essere

ammessa”, ed il giudice non può decidere discrezionalmente se ammetterla o meno.92

È preferibile evitare di acquisire i dati informatici come se fossero documenti (art.

234 c.p.p.), perché sarebbero inseriti nel fascicolo del dibattimento (art. 515 c.p.p.), ed

il giudice ne prenderebbe direttamente cognizione ai fini della decisione (art. 526 co. 1

c.p.p.).93

90Art. 220 co. 1 c.p.p.
91Nei capitoli precedenti si è menzionata la loro fragilità, e la natura scientifica dell’informatica

forense. Nei capitoli successivi le esigenze dell’informatica forense, ed in particolare del software
utilizzato per il trattamento dei dati, saranno oggetto di discussione più approfondita.

92Gli argomenti a favore di questa interpretazione sono il fatto che la perizia possa essere richiesta
anche d’ufficio (art. 224 co. 1 c.p.p.), ed l’obbligo di motivazione delle decisioni del giudice (art. 116 co. 6
Cost., art. 546 co. 1 lett. e c.p.p.). Se i dati informatici sono rilevanti ai fini della decisione, ma il giudice
non è in grado di spiegare in maniera adeguata come sono stati acquisiti e analizzati, la motivazione
deve essere ritenuta insufficiente.

93In questo caso, esiste il rischio che il giudice valuti i dati così come si presentano visivamente, e non
sia in grado di valutare se il documento sia stato acquisito correttamente, se sia stato manipolato, ecc.
Questo tipo di ignoranza è scusabile, perché queste conoscenze vanno oltre la conoscenza della persona

27

È anche preferibile evitare di acquisire i dati informatici come una prova atipica

(art. 189 c.p.p.), perché questo tipo di prova è una norma di chiusura del sistema,94 e

può essere utilizzata per le prove scientifiche “nuove” e “controverse”,95 ma è difficile

ritenere che l’informatica forense possa rientrare in quelle categorie.96 Un ulteriore

problema della prova atipica è che non sono previste cautele per la corretta acquisizione

della prova, garanzie per la tutela dei diritti fondamentali,97 o sanzioni processuali.98

L’espressione “acquisire dati” può essere interpretata nel senso che la perizia

possa essere usata anche per acquisire dati informatici, e non solo per valutarli.

Pertanto, è preferibile evitare di usare istituti come l’ispezione (art. 244 co. 2 c.p.p.) o

perquisizione (art. 247 co. 1-bis c.p.p.) di un sistema informatico,99 o gli accertamenti

media, ma è proprio per questo motivo che il giudice è tenuto a richiedere la perizia. Come regola
generale, è preferibile partire sempre dal presupposto che la perizia serva, ed escludere il suo utilizzo
solo in casi marginali. Ad esempio, il dato informatico viene acquisito come documento, ma viene usato
solo ad abundantiam per corroborare una ricostruzione dei fatti che è già largamente supportata da
prove più affidabili.

94Deve essere usata in casi estremi, solo quando le modalità che si intendono usare non sono
assolutamente riconducibili ad una prova tipica e già disciplinata dal legislatore. Ad esempio, i dati
prodotti dall’operazione di controllo satellitare mediante GPS sono considerati una prova atipica (v.
Silvia Renzetti, «La prova scientifica nel processo penale: problemi e prospettive», Rivista di Diritto
Processuale, vol. 75, fasc. 2, 2015, pp. 399–423, p. 404), perché l’attività di pedinamento in generale è
considerata un’attività di indagine atipica (v. Giovanni Conso, Marta Bargis, Vittorio Grevi, Compendio
di procedura penale, CEDAM, 2020, p. 449).

95In questo caso, le parti discutono se la prova scientifica sia effettivamente idonea ad accertare i fatti,
in modo da evitare alla radice l’ammissione di junk science (pseudoscienza) nel processo (v. S. Renzetti,
op. cit., pp. 406–408).

96Per quanto l’oggetto della disciplina possa essere in continua evoluzione, è necessario tenere a
mente che l’attività di ricerca dell’informatica forense non è nuova o controversa, ma può seguire il
modello delle scienze naturali.

97L’unico limite è l’inammissibilità di prove atipiche che incidono su libertà fondamentali
costituzionalmente garantite (v. G. Conso, M. Bargis, V. Grevi, op. cit., p. 449).

98Viceversa, esistono già altri istituiti che offrono garanzie maggiori per la persona e per i dati, ed è
molto più opportuno usare quelli.

99L’ispezione serve ad “accertare le tracce e gli altri effetti materiali del reato” (art. 244 co. 1 c.p.p.),
mentre la perquisizione serve a cercare il “corpo del reato o cose pertinenti al reato” (art. 247 co. 1
c.p.p.). In entrambi i casi, si devono usare “misure tecniche dirette ad assicurare la conservazione dei
dati originali e ad impedirne l’alterazione”, ed il modo migliore per farlo è acquisire una copia dei
dati contenuti nel dispositivo. Tuttavia, dato che la copia di dati informatici può essere considerato
un sequestro, perché riguarda l’acquisizione del “corpo del reato”, definito come “le cose sulle quali o
mediante le quali il reato è stato commesso” (art. 253 c.p.p.), i due istituti tendono a sovrapporsi. Se
in entrambi i casi si arriva comunque alla copia dei dati, è meglio eseguirla fin dall’inizio mediante
l’intervento di un perito, e svolgere tutte le operazioni successive sulla base di quella copia, invece di
procedere a più acquisizioni nel tempo.

28

tecnici irripetibili.100

La “valutazione” dei dati può essere svolta dal solo perito, dai soli consulenti tecnici

delle parti101 o, nel caso ideale, dal perito e dai consulenti.102

Il perito è imparziale: i suoi compiti sono di valutare l’attendibilità dei dati103 e

rispondere ai requisiti formulati dal giudice104 nel modo più completo ed oggettivo

possibile.105

Viceversa, i consulenti tecnici devono valutare gli stessi elementi a disposizione

del perito, ma devono favorire la parte assistita. Se le conclusioni del perito sono

favorevoli alla parte, i consulenti tecnici cercheranno altri argomenti a supporto.106 Se

le conclusioni sono sfavorevoli, i consulenti tecnici dovranno cercare di screditare

100È possibile qualificare gli accertamenti relativi ai dati informatici come irripetibili perché i dati
informatici possono essere “soggett[i] a modificazione” (art. 360 c.p.p.) o perché l’accertamento potrebbe
“determina[re] modificazioni delle cose” (art. 127 disp. att. c.p.p.). In linea generale, sarebbe sempre
preferibile usare la perizia, perché è la modalità più garantita. Tuttavia, laddove questo sia assolutamente
impossibile, ed esiste un rischio concreto che i dati siano alterati o dispersi prima che si possa svolgere
la perizia all’interno di un incidente probatorio, è possibile acquisirli mediante accertamento tecnico
irripetibile. È prevista un’importante sanzione processuale: se in seguito si dimostra che era possibile
attendere l’incidente probatorio, e che quindi l’accertamento è stato fatto con modalità irripetibili senza
reale necessità, i risultati dell’accertamento sono inutilizzabili (art. 360 co. 4 e 5 c.p.c).

101Le parti possono nominare un proprio consulente tecnico anche se non viene disposta la perizia.
In questo caso, i consulenti potranno intervenire alle ispezioni (non si menziona la possibilità di
partecipare alle perquisizioni, ma è possibile un’applicazione analogica della norma, dato che andrebbe
a favore dell’indagato o imputato), potranno esaminare le cose che sono state oggetto di ispezione o
perquisizione, e potranno presentare il loro parere anche con memorie (art. 233 co. 1–1-ter c.p.p.).

102In questo caso, i consulenti potranno assistere al conferimento dell’incarico e partecipare
alle operazioni peritali, possono presentare richieste, osservazioni e richieste (che devono essere
verbalizzate), e se vengono nominati dopo lo svolgimento della perizia, possono esaminare l’oggetto
della perizia e la relazione del perito (art. 230 c.p.p.). In particolare, se partecipano al conferimento
dell’incarico, il giudice formula i quesiti al perito dopo aver sentito anche i consulenti tecnici (art. 226
c.p.p.).

103Deve verificare se le modalità di acquisizione hanno acquisito tutti i dati o solo parte di essi,
se l’originale è stato modificato nel processo di acquisizione, e se la copia è conforme all’originale;
successivamente, deve verificare la presenza di irregolarità nei dati, che potrebbero indicare che i
dati siano stati manipolati per ostacolare o sviare le indagini, e indicare le possibili cause di queste
irregolarità.

104In particolare, deve indicare gli strumenti utilizzati, le procedure seguite, il significato delle
operazioni, e l’attendibilità dei risultati.

105In particolare, deve indicare tutti i possibili decorsi causali che possono spiegare l’assetto dei dati
informatici, sia che siano a favore, sia che siano a sfavore della parte.

106Ad esempio, compieranno le stesse analisi con strumenti diversi per dimostrare che si arriva agli
stessi risultati, o dimostreranno l’assenza di decorsi causali alternativi che avrebbero potuto portare
allo stesso risultato.

29

l’analisi del perito.107 L’attività del consulente tecnico del difensore deve essere

necessariamente favorevole all’assistito,108 ma non può spingersi fino alla commissione

di un reato.109

Il perito, e a maggior ragione i consulenti tecnici, possono anche arrivare a

“conclusioni divergenti rispetto all’opinione comune corrente”110 purché motivino

adeguatamente il loro operato e le loro conclusioni durante il contraddittorio.111

Il giudice è peritus peritorum (perito dei periti), e quindi è libero di valutare le

contribuzioni del perito e dei consulenti tecnici. È importante che il giudice eviti di

cadere in due situazioni estreme: una dove non richiede la prova scientifica anche

quando sarebbe opportuno, e una dove rimette la decisione interamente agli esperti.112

Il giudice è tenuto a valutare tutti i contributi in maniera libera e critica, senza

107Ad esempio, i dati sono stati acquisiti usando tecniche inadeguate e quindi l’analisi è viziata ab
origine; i risultati sono inaffidabili perché il perito ha usato modalità di analisi originali, nuove e non
sufficientemente condivise dalla comunità scientifica, inadeguate al caso concreto, che non rispettano
i principi fondamentali dell’informatica forense, ecc.; è possibile ottenere un risultato diverso e più
affidabile usando metodi di analisi, strumenti o procedure diverse; esistono ulteriori fattori che il
perito non ha considerato, o a cui non ha dato sufficiente peso, che possono spiegare lo stato dei dati
informatici. In generale, è sufficiente che il consulente tecnico del difensore generi un “ragionevole
dubbio” riguardo la prova del fatto per evitare una sentenza di condanna (art. 533 co. 1 c.p.p.), e non è
necessario provare un fatto nuovo e diverso.

108Se causasse un danno con dolo, integrerebbe il reato di consulenza infedele (art. 380 c.p.) (v. Stefano
Canestrari et al., Diritto penale. Lineamenti di parte speciale, Monduzzi Editoriale, 2016, p. 273).

109Ad esempio, le attività materiali che ostacolano le indagini (come distruggere o manipolare le
prove) integrerebbero il reato di favoreggiamento personale (art. 378 c.p.) (v. S. Canestrari et al., ivi,
p. 252).

110Ibidem, p. 265.
111Si potrebbe affermare che la funzione del perito e dei consulenti è di garantire la più piena attuazione

del diritto di difesa, ed in particolare, dell’art. 111 co. 4 Cost., secondo cui nel processo penale la prova si
forma in contraddittorio. Per quanto riguarda le prove scientifiche (in questo caso, la prova che ha per
oggetto dati informatici) è importante garantire che la prova si formi all’interno di un contraddittorio
tecnico. Nel caso ideale, entrambe le parti si doteranno di consulenti prima della perizia, e il perito sarà
il primo soggetto che andrà a interagire con i dati.

112Nel primo caso, il giudice può decidere discrezionalmente se serva l’intervento di un perito, o se
siano sufficienti le conoscenze della persona media. Tuttavia, come discusso, è generalmente preferibile
l’intervento di un perito quando si usano dati informatici. Il secondo caso è particolarmente insidioso
se nessuna delle parti, o solo una di loro (presumibilmente il PM, dato che la parte pubblica ha risorse
maggiori) ha nominato un consulente tecnico. V. S. Renzetti, op. cit., pp. 405–406.

30

creare gerarchie fra i tecnici113 e fra i tipi di prova.114 È importante che il giudice

valuti la ragionevolezza intrinseca dell’attività svolta, e la sua coerenza con i principi

fondamentali della materia, specie se è stato necessario usare tecniche di analisi

complesse o innovative.115

113Ad esempio, non deve preferire le conclusioni del perito rispetto a quelle dei consulenti tecnici, e
non deve preferire il consulente del PM rispetto al consulente della difesa, argomentando che sono “più
oggettivi”, altrimenti si annichilisce il senso del modello accusatorio, e si ritorna al modello inquisitorio.

114Anche qui il giudice deve evitare due estremi, uno dove la prova informatica prevale sulle altre
prove solo perché è una prova scientifica (v. S. Renzetti, op. cit., p. 412), e uno dove la prova informatica
non viene accolta, solo perché è stato necessario usare una tecnica o strumento di analisi originale, che
non è stato oggetto di larga discussione (v. Giorgio Marinucci, Emilio Dolcini, Gian Luigi Gatta, Manuale
di Diritto Penale. Parte Generale. Nona edizione, Giuffrè Francis Lefebvre, 2020, p. 246). Il secondo caso si
può verificare perché l’informatica è una materia complessa ed in continua evoluzione, ed nei settori
più in avanguardia è possibile che non esistano ancora delle prassi affermate.

115Ad esempio, un conto è la ricerca di file per hash, che è concettualmente semplice da spiegare
(tutti i file all’interno di un supporto vengono confrontati con una lista di file già conosciuti), e produce
risultati certi (o il file rientra in quella lista, o non vi rientra; v. M. Ferrazzano, op. cit., p. 153), un conto
sono le tecniche di analisi per verificare se un’immagine è stata manipolata, che sono concettualmente
complesse, e c’è un margine di valutazione discrezionale (v. Sebastiano Battiato, Giuseppe Messina,
Rosetta Rizzo, «Image forensics. Contraffazione digitale e identificazione della camera di acquisizione:
status e prospettive», 2014, https://www.researchgate.net/publication/242495487, pp. 16–20 e M.
Ferrazzano, op. cit., pp. 152–153).

31

https://www.researchgate.net/publication/242495487

32

Capitolo 2

Software libero come modello ideale

per l’informatica forense

2.1 Esigenze del software per l’informatica forense

2.1.1 Acquisizione dei dati informatici

Il trattamento dei dati informatici all’interno dell’informatica forense è diviso in

una serie di fasi. Le prime due fasi hanno natura puramente materiale, e non richiedono

l’uso di software specializzato: sono l’identificazione1 e la raccolta.2

L’uso di software specializzato, che deve essere conforme alle indicazioni elaborate

dall’informatica forense, diventa necessario a partire dall’acquisizione, la fase in cui si

crea una copia dei dati informatici.3

Quando il codice di procedura penale menziona operazioni che potrebbero influire

1È la fase in cui si ricercano i supporti materiali che possono contenere dati informatici utili, v. M.
Ferrazzano, op. cit., pp. 29–30.

2È la fase in cui i supporti materiali, e qualsiasi altro oggetto necessario per il loro funzionamento, o
comune utile per le indagini, viene rimosso fisicamente. In alcuni casi non è possibile procedere alla
raccolta (ad esempio, nel caso di sistemi informatici che erogano servizi essenziali, e quindi devono
rimanere sempre accesi), e pertanto si deve passare immediatamente alla fase di acquisizione. V. M.
Ferrazzano, ivi, pp. 30–34.

3Ibidem, p. 34.

33

sull’integrità dei dati informatici4 usa espressioni come “adottando misure tecniche

dirette ad assicurare la conservazione dei dati originali e ad impedirne l’alterazione”5

oppure “mediante procedura che assicuri la conformità della copia all’originale e la

sua immodificabilità”.6

La procedura di acquisizione dei dati informatici deve impedire l’alterazione dei

dati originali, deve garantire che la copia sia conforme all’originale e deve permettere

di rilevare se la copia sia stata modificata.7

I dati possono essere acquisiti da fonti diverse8 e ogni fonte presenta caratteristiche

diverse, che influenzano come i dati devono essere acquisiti.

Il primo passo è valutare la quantità e qualità dei dati che è possibile acquisire dal

supporto. Nel caso di supporti materiali estraibili9 è generalmente possibile acquisire

tutti i dati che contengono.10 Nel caso di supporti materiali embedded (integrati, e

quindi non estraibili)11 e nel caso della network forensics12 è possibile acquisire meno

dati.13 Se un sistema informatico è acceso, è possibile acquisire i contenuti della sua

4Come le ispezioni, perquisizioni, sequestri e accertamenti urgenti.
5Art. 244 co. 2, art. 247 co. 1-bis e art. 352 co. 1-bis c.p.p.
6Art. 254-bis, art. 354 co. 2 c.p.p.
7È praticamente impossible garantire la vera immodificabilità dei dati informatici, il meglio che si

può fare è usare strumenti che verificano se sono stati modificati o meno.
8Le fonti includono i supporti materiali rimovibili, i supporti integrati, i siti e servizi accessibili

online, la RAM, ecc.
9Ad esempio, dischi rigidi o memorie flash (chiavette USB, schede SD, e SSD), ecc.

10È importante che il software per l’informatica forense implementi correttamente le specifiche
tecniche relative al funzionamento di ogni tipo di supporto materiale, in modo che sia possibile usare i
comandi di basso livello (ossia, che permettono di interagire direttamente con l’hardware) per garantire
l’estrazione della maggiore quantità di informazioni possibili (ad esempio, informazioni diagnostiche). In
ogni caso, è importante catturare anche lo spazio non allocato (ossia, non assegnato ad una partizione),
e lo slack space (lo spazio libero all’interno delle singole partizioni), perché potrebbero contenere tracce
di dati informatici. V. M. Ferrazzano, op. cit., p. 34.

11Il caso tipico sono i supporti di memoria contenuti negli smartphone, tablet e nei computer più
recenti della Apple (non sono rimovibili perché saldati alla scheda madre del dispositivo), oppure dei
dispositivi ad hoc che non usano parti standard (ad esempio, apparecchiature mediche).

12Analisi forense di dati che sono resi disponibili mediante connessioni di rete. Ad esempio, siti
internet, dati conservati su piattaforme cloud, dati conservati su altri sistemi informatici a cui non si ha
un accesso diretto, ed è necessario usare protocolli di rete (come HTTP(S), BitTorrent, SMB, SSH, ecc.)
per accedervi, ecc.

13In entrambi i casi l’unica modalità per acquisire dati informatici è di comunicare con il software che
viene eseguito sul dispositivo integrato o server remoto. Il problema con questo tipo di acquisizioni è che
il software con cui si interagisce è libero di nascondere o modificare i dati informatici. È generalmente
sconsigliabile cercare di eseguire operazioni di forzatura dellemisure di protezione per cercare di ottenere

34

memoria volatile.14

Il secondo passo è impedire che i dati originali vengano modificati durante

l’operazione di copia. Pertanto, il software per l’informatica forense deve usare tutte

le precauzioni possibili per ridurre al minimo questo rischio.15

Il terzo passo è creare una forensic image (copia forense) dei dati.16 Il problema è la

corretta gestione degli errori di lettura dei dati da parte del software per l’informatica

forense.17

L’ultimo passo è verificare la conformità della copia all’originale. Questa operazione

il pieno accesso a tutti i dati contenuti sul dispositivo, perché si va ad alterare il normale funzionamento
del software, e quindi si potrebbero danneggiare o modificare i dati in maniera difficilmente prevedibile.
Piuttosto, è preferibile accontentarsi di leggere i dati che il dispositivo mette naturalmente a disposizione,
tenendo sempre a mente che le informazioni offerte potrebbero non essere complete o precise. Ad
esempio, il protocollo HTTP (v. R. Fielding, M. Nottingham, J. Reschke, RFC 9110: HTTP Semantics,
2022, https://httpwg.org/specs/rfc9110.html) è largamente usato per trasferire singoli file. Tuttavia,
il protocollo non richiede la comunicazione corretta degli elementi più basilari del file. Ad esempio,
l’ultima modifica del file su disco non deve essere riprodotta nel campo Last-Modified, ed l’indicazione
del nome del file quando viene scaricato è un’estensione allo standard base (v. J. Reschke, RFC 6266:
Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP), 2011, https:
//httpwg.org/specs/rfc6266.html).

14È importante catturare l’intero contenuto della memoria. Quando la RAM si riempie, il sistema
operativo trasferisce parte dei dati della memoria all’interno di un file o partizione di swap (nei sistemi
Linux) o nel pagefile (nei sistemi Windows). Pertanto, è importante acquisire anche una copia di questi
file. I contenuti della RAM includono i programmi in esecuzione, gli utenti connessi, le connessioni di
rete attive, i dispositivi in uso, ecc. V. M. Ferrazzano, op. cit., p. 36.

15Ad esempio, quando si apre un singolo file è preferile usare la funzione open, perché permette di
specificare in maniera esplicita le opzioni O_RDONLY (apertura in sola lettura) e O_NOATIME (divieto di
cambiare la data di ultima apertura del file). Queste opzioni impediscono la modifica dei dati o metadati
del file (v. M. Kerrisk, open(2) — Linux manual page, 2023, https://web.archive.org/web/202312090315
06/https://man7.org/linux/man-pages/man2/open.2.html, sez. “DESCRIPTION”). Quando si collega
un supporto materiale è importante usare prima il comando blockdev con l’opzione setro per bloccare
qualsiasi operazione in scrittura (v. Z. Karel, mount(8) Manual Page, 2023, https://github.com/util-
linux/util-linux/blob/6b081fa421f4028bad0be22178f8d8e5e9015041/sys-utils/mount.8.adoc, sez.
“COMMAND-LINE OPTIONS”) e poi il comando mount con le opzioni ro (sola lettura), noatime (divieto
di aggiornare la data di ultima apertura), e noexec (divieto di eseguire file) (v. Eva Huebner, Stefano
Zanero, Open Source Software for Digital Forensics, Springer Science+Business Media, 2010, p. 73).

16Si parla anche di bitstream image (copia bit-a-bit), ma l’espressione non va intesa letteralmente:
sarebbe estremamente inefficiente copiare un bit alla volta. La copia viene eseguita leggendo e copiando
blocchi di centinaia o migliaia di byte alla volta, dove un byte sono 8 bit.

17Il software deve essere in grado di rilevare che sia avvenuto un errore, e deve chiedere all’utente
come proseguire (se riprovare ad acquisire il dato, se saltare l’acquisizione del dato che ha causato
l’errore e continuare l’operazione, o se interrompere l’operazione). Il programma deve fornire quante
più informazioni utili, in modo che l’utente possa prendere una decisione informata. Il programma deve
tenere traccia delle operazioni svolte, delle decisioni dell’utente, e di qualsiasi evento che possa influire
sulla quantità o qualità dei dati.

35

https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc6266.html
https://httpwg.org/specs/rfc6266.html
https://web.archive.org/web/20231209031506/https://man7.org/linux/man-pages/man2/open.2.html
https://web.archive.org/web/20231209031506/https://man7.org/linux/man-pages/man2/open.2.html
https://github.com/util-linux/util-linux/blob/6b081fa421f4028bad0be22178f8d8e5e9015041/sys-utils/mount.8.adoc
https://github.com/util-linux/util-linux/blob/6b081fa421f4028bad0be22178f8d8e5e9015041/sys-utils/mount.8.adoc

si svolge confrontando l’hash dei dati originali con l’hash della copia appena creata18

usando almeno due funzioni di hash.19

La verifica è possibile solo se l’operazione di acquisizione è ripetibile, perché

richiede una seconda lettura dei dati informatici già acquisiti.20 La fase di verificazione

della copia non pone difficoltà significative.21 Il calcolo dell’hash della copia può

essere anche ripetuto a distanza di tempo, per verificare se la copia abbia subito

modificazioni.22

2.1.2 Conservazione dei dati informatici

La conservazione23 è la fase in cui i supporti materiali vengono preparati per il

trasporto e i dati vengono preparati per l’archiviazione di lungo termine.24

Il codice di procedura fa riferimento alla custodia dei dati informatici in due articoli.

L’art. 259 co. 2 c.p.p. recita:

18Le funzioni di hash permettono di trasformare una sequenza di dati informatici di lunghezza
arbitraria in una sequenza di dati di lunghezza fissa (chiamata digest). La proprietà fondamentale è
che allo stesso input corrisponde lo stesso digest, e pertanto è possibile usare le funzioni di hash per
verificare se due file sono identici. V. M. Ferrazzano, op. cit., p. 35.

19Esistono metodi per generare lo stesso digest (e quindi dare l’illusione che i dati siano uguali)
anche se i valori in input sono diversi (è un attacco crittografico chiamato chosen-prefix collision, v.
Gaëtan Leurent, Thomas Peyrin, «SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and
Application to the PGP Web of Trust», 2020, https://www.usenix.org/system/files/sec20-leurent.pdf,
p. 1839), ma è improbabile che lo stesso metodo funzioni per due funzioni di hash diverse. Il secondo è
che nel tempo le funzioni di hash diventano obsolete (v. National Institute of Standards and Technology,
NIST Transitioning Away from SHA-1 for All Applications, 2022, https://web.archive.org/web/2022121621
2335/https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps) ed è usare le
funzioni di hash più recenti rende la propria applicazione a prova di futuro.

20L’operazione di acquisizione può essere irripetibile per sua natura (ad esempio, i contenuti della
RAM cambiano in continuazione) o per le circostanze del caso concreto (ad esempio, un supporto
materiale che produce numerosi errori di lettura). In questi casi la è necessario documentare l’operazione
anche con strumenti esterni rispetto al software (v. M. Ferrazzano, op. cit., pp. 35–36).

21Le specificazioni tecniche relative alle funzioni di hash sono dettagliate (v. National Institute of
Standards and Technology, «Secure Hash Standard (SHS)», 2015, http://dx.doi.org/10.6028/NIST.FIPS.1
80-4), ed esistono esempi ufficiali per verificare la correttezza dell’implementazione (v. National Institute
of Standards and Technology, Examples with Intermediate Values, 2023, https://web.archive.org/web/20
230603170119/https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines/example-values.

22Basta ricalcolare l’hash della copia, e verificare se è cambiato rispetto ai valori che erano stati
ottenuti durante la prima verificazione.

23M. Ferrazzano, op. cit., p. 37.
24È importante notare che la conservazione è una fase particolare, che non si conclude con l’inizio

della fase successiva, ma rimane rilevante fino alla conclusione definitiva del trattamento dei dati.

36

https://www.usenix.org/system/files/sec20-leurent.pdf
https://web.archive.org/web/20221216212335/https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://web.archive.org/web/20221216212335/https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://web.archive.org/web/20230603170119/https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines/example-values
https://web.archive.org/web/20230603170119/https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines/example-values

Quando la custodia riguarda dati, informazioni o programmi informatici,

il custode è altresì avvertito dell’obbligo di impedirne l’alterazione o

l’accesso da parte di terzi, salva, in quest’ultimo caso, diversa disposizione

dell’autorità giudiziaria.

L’art. 260 co. 2 c.p.p. recita:

L’autorità giudiziaria fa estrarre copia dei documenti e fa eseguire

fotografie o altre riproduzioni delle cose sequestrate che possono alterarsi

o che sono di difficile custodia, le unisce agli atti e fa custodire in

cancelleria o segreteria gli originali dei documenti, disponendo, quanto

alle cose, in conformità dell’articolo 259. Quando si tratta di dati, di

informazioni o di programmi informatici, la copia deve essere realizzata

su adeguati supporti, mediante procedura che assicuri la conformità della

copia all’originale e la sua immodificabilità; in tali casi, la custodia degli

originali può essere disposta anche in luoghi diversi dalla cancelleria o

dalla segreteria.

Per prevenire l’alterazione e l’accesso non autorizzato da parte di terzi, la soluzione

più semplice ed efficace è di conservare i supporti materiali all’interno di sistemi

informatici che sono air-gapped.25

L’immodificabilità dei dati può essere garantita con l’uso di software specializzato

per il backup e l’archiviazione dei dati, che deve avere una serie di funzionalità come

la possibilità di impedire la modifica intenzionale dei dati,26 di comprimere i dati e

proteggerli con crittografia,27 ed eventualmente di cercare di riparare i dati in caso di

25L’air-gapping (vuoto d’aria) consiste nello scollegare un sistema informatico dalla rete. Il sistema
rimane acceso, e può monitorare la condizione dei dati in tempo reale, ma è impossibile modificare o
danneggiare i dati con attacchi informatici.

26Ad esempio, permettere solo la lettura dei dati (modalità read-only).
27La compressione permette di archiviare i dati usando meno spazio. La tecniche di authenticated

encryption (crittografia autenticata) permettono di cifrare i dati e garantire simultaneamente che non
siano stati alterati, perché la decifrazione fallirebbe con un errore se i dati criptati venissero alterati per
qualsiasi motivo.

37

corruzione.28

2.1.3 Catena di custodia

La catena di custodia è un documento che inizia ad essere redatto dopo il sequestro

dei dati digitali, e continua ad essere aggiornato durante tutta la fase della loro

conservazione. La redazione di una catena di custodia è richiesta ed è regolata dagli

standard ISO,29 ma non è menzionata nel codice di procedura italiano.30

È possibile prendere come esempio il codice di procedura penale colombiano per

esaminare i requisiti processuali della catena di custodia.31

L’art. 254 indica la finalità e gli elementi che devono essere considerati:

Con el fin de demostrar la autenticidad de los elementos materiales

probatorios y evidencia física, la cadena de custodia se aplicará teniendo

en cuenta los siguientes factores: identidad, estado original, condiciones de

recolección, preservación, embalaje y envío; lugares y fechas de permanencia

y los cambios que cada custodio haya realizado. Igualmente se registrará

el nombre y la identificación de todas las personas que hayan estado en

contacto con esos elementos.32

Per quanto riguarda la prova informatica, è importante redigere la catena di

28Ad esempio, duplicando più volte i dati ed usando un consensus algorithm, oppure usando un
sistema di error-correcting codes, ecc.

29In particolare, lo standard ISO 27037:2012. V. M. Ferrazzano, op. cit., p. 38
30Gli standard ISO non sono vincolanti dal punto di vista legale, e al più possono rilevare come

strumenti di soft law, che possono ispirare il legislatore ad adottare buone pratiche. Le uniche formalità
previste dal codice a seguito del sequestro sono l’applicazione e rimozione di sigilli da parte dell’ufficiale
giudiziario sulle cose sequestrate (artt. 260 e 261 c.p.p.).

31La disciplina della catena di custodia è contenuta nell’art. 254 e ss. V. Congreso de la República
de Colombia, Ley 906 de 2004, Por la cual se expide el Código de Procedimiento Penal. (Corregida de
conformidad con el Decreto 2770 de 2004), 2004, https://web.archive.org/web/20200707152305/https:
//www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=14787.

32Al fine di dimostrare l’autenticità degli elementi di prova e delle provemateriali, la catena di custodia
sarà redatta tendendo conto dei seguenti elementi: identità, stato originale, condizioni al momento della
raccolta, conservazione, imballaggio, spedizione; luoghi e date di permanenza, e cambiamenti apportati
da ogni custode. Allo stesso modo si registrerà il nome ed i documenti di tutte le persone che sono state
in contatto con questi elementi.

38

https://web.archive.org/web/20200707152305/https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=14787
https://web.archive.org/web/20200707152305/https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=14787

custodia considerando la doppia natura dei dati informatici, materiale33 e digitale.34

La redazione della catena di custodia è di responsabilità dei funzionari pubblici

(art. 255):

La aplicación de la cadena de custodia es responsabilidad de los servidores

públicos que entren en contacto con los elementos materiales probatorios y

evidencia física.35

Per identificare i funzionari pubblici, i custodi, e più in generale, tutte le persone che

entrano in contatto con i dati informatici, è possibile redigere una catena di custodia

in formato digitale e applicare firme digitali.36

Il materiale raccolto deve essere conservato e consegnato il prima possibile al perito.

I vari funzionari che man mano entrano in possesso degli elementi sono responsabili

per la loro conservazione e devono verificare che i dati non siano stati alterati.37 Il

perito controlla l’integrità dei dati prima di analizzarli (artt. 257 a 261). Dopo l’analisi,

si può disporre la distruzione degli elementi o la loro conservazione (art. 262):

Los remanentes del elemento material analizado, serán guardados en el

almacén que en el laboratorio está destinado para ese fin. Al almacenarlo será
33I supporti materiali sono identificati con il loro numero seriale. Le loro condizioni al momento

della raccolta (ad esempio, “inserito in un computer trovato acceso”, oppure “disco rigido esterno, non
collegato ad un computer”) servono per determinare le ultime cause di modificazione che possono aver
influenzato i dati. Per quanto riguarda le modalità di acquisizione, conservazione e trasporto, si indica
come il supporto è stato estratto, se si sono verificati problemi durante l’estrazione, e quali misure sono
state prese per proteggerlo da danni.

34I dati informatici sono identificati dai loro hash. Le condizioni al momento della raccolta sono
indicate nel log della procedura di acquisizione (che indicherà informazioni come quale programma è
stato usare per compiere l’acquisizione, quando l’operazione è stata compiuta, su quale supporto, quanti
dati sono stati copiati, se sono avvenuti errori durante la lettura o verificazione, i vari digests, ecc.). Per
quanto riguarda la loro conservazione, si devono indicare quale precauzioni e quali programmi sono
stati usati per garantire l’integrità e cercare di evitare la modifica dei dati.

35I funzionari pubblici che entrano in contatto con gli elementi di prova e le prove materiali sono
responsabili per la redazione della catena di custodia.

36Se la redazione della catena di custodia viene interpretata come un’attività che attribuisce la
qualifica di PU, si tratterà di firma digitale autenticata (art. 25 CAD). I soggetti diversi dal PU possono
apporre la firma in maniera digitale, o autografa (nel secondo caso si firmerà digitalmente la scansione
della catena di custodia cartacea).

37Si deve verificare che i supporti materiali siano stati imballati correttamente, e che il supporto
materiale ed gli hash dei dati in esso contenuto corrispondano a quanto riportato all’inizio della catena
di custodia.

39

previamente identificado de tal forma que, en cualquier otro momento, pueda

ser recuperado para nuevas investigaciones o análisis o para su destrucción,

cuando así lo disponga la autoridad judicial competente.38

La soluzione ideale per la conservazione dei dati a lungo termine è di cifrarli, e di

conservare la chiave di cifratura su carta, in un luogo separato e diverso.39

Infine, si prevede che ad ogni passaggio i responsabili si identifichino e diano un

resoconto dello stato degli elementi (artt. 263 e 264), e che la catena di custodia sia

autenticata dalla polizia giudiziaria e dai periti (art. 265).40

Il codice non definisce in cosa consista l’autenticazione. Se la catena di custodia

viene redatta in forma digitale si può ragionevolmente pensare che sia necessario

verificare l’integrità e completezza della catena, e la validità delle firme digitali.

In generale, si può osservare che gli articoli del codice sono ispirati ad una netta

divisione delle responsabilità fra i vari soggetti,41 che va ad enfatizzare il ruolo del

perito e l’importanza della conservazione della prova.42

2.1.4 Analisi e valutazione dei dati informatici

L’analisi e la valutazione sono due fasi distinte, ma strettamente legate fra di loro.

L’analisi consiste nella ricerca degli elementi che risultano utili per la ricostruzione

38I residui degli elementi materiali analizzati saranno conservati nel magazzino che è destinato
a questo scopo nel laboratorio. Al momento del deposito, si provvederà ad identificare i residui in
modo che, in qualsiasi altro momento, sia possibile recuperarli per nuove investigazioni o analisi o per
distruggerli quando richiesto dall’autorità giudiziale competente.

39La distruzione della chiave è funzionalmente equivalente alla distruzione dei dati, perché li rende
illeggibili.

40Per quanto riguarda l’identificazione dei responsabili, v. nota 36. Ogni aggiunta alla catena di
custodia deve essere a sua volta firmata dai soggetti presenti.

41La polizia giudiziaria ha il solo compito di assicurare la fonte di prova, i soggetti intermedi fra
polizia giudiziaria e perito hanno il compito di assicurare la sua corretta conservazione e trasporto, ed
il perito è l’unico soggetto che può svolgere accertamenti ed analisi.

42La prova deve essere portata al perito nel minor tempo possibile, e tutti i custodi intermedi devono
garantire che la prova sia ancora integra. Questa impostazione è particolarmente adatta ai dati digitali,
dato che possono essere modificati con facilità ad ogni passaggio di mani, e rilevare queste modifiche
non è facile.

40

del fatto,43 mentre la valutazione consiste nella interpretazione di questi elementi.44

Entrambe le fasi sono svolte sia dal perito,45 sia dai consulenti tecnici.46

La valutazione (come fase del trattamento dei dati informatici, svolta da soggetti

con competenze tecniche) non va confusa con la libera valutazione delle prove, svolta

dal giudice (art. 192 co. 1 c.p.p.), perché hanno natura diversa.47

Queste fasi comportano una serie di esigenze per il software. La più importante è

che lo strumento di analisi si conformi ai risultati prodotti dalla ricerca scientifica.48

Laddove questo non sia possibile49 è necessario argomentare la ragionevolezza

43Nel caso più semplice, questi elementi possono essere individuati ed aperti senza l’uso di tecniche
particolari; se i file sono stati cancellati, è possibile esaminare l’intero contenuto del disco per cercare di
recuperarli; se i file sono stati occultati mediante tecniche di stenografia (nascondere un file dentro un
altro file) o resi illeggibili mediante la crittografia, è possibile usare strumenti di analisi specializzati per
rilevare l’uso di queste tecniche; se la macchina è stata colpita da un attacco informatico, è necessario
verificare la presenza del malware, o di sue tracce, ecc. V. M. Ferrazzano, op. cit., pp. 39–40.

44È possibile dare più interpretazioni degli stessi dati informatici (ad esempio, “certi file sono stati
scaricati intenzionalmente”, oppure “quei file non sono mai stati scaricati, ma sono stati aggiunti da un
terzo”). Per ogni interpretazione, si devono cercare gli indizi rilevanti, valutare la loro affidabilità
individuale, ed infine, valutare l’affidabilità complessiva dell’interpretazione. Ad esempio, si può
verificare se esiste traccia di quei file nella cronologia o cache del browser; se non si trova nulla,
si cerca di determinare se la cronologia o cache sono state manipolate per eliminare le tracce; si
confrontano i metadati dei file, come la data di creazione o l’utente che ha creato il file, con altri file
vicini, alla ricerca di incongruenze; si controlla la data di ultima apertura del file; si ricercano elementi
che possono aiutare a determinare se quelle date sono state manipolate; ecc. V. M. Ferrazzano, ivi, p. 41.

45L’analisi del perito è limitata agli elementi necessari per rispondere ai quesiti che sono stati posti
dal giudice, e la sua valutazione deve essere terza ed imparziale (non deve né accusare, né difendere
l’imputato).

46L’analisi e le valutazioni del consulente tecnico del PM riguardano principalmente gli elementi a
sostegno dell’accusa, ma non possono ignorare gli elementi a favore dell’indagato o imputato (cfr. art.
358 c.p.p.). L’analisi e le valutazioni del consulente tecnico del difensore riguardano esclusivamente gli
elementi a favore dell’indagato o imputato.

47I tecnici valutano direttamente ed esclusivamente i dati informatici, mentre il giudice valuta la
loro interpretazione, considerando anche il resto del quadro probatorio. In particolare, è importante
ricordare che il perito può solo aiutare il giudice a decidere, ma non può decidere al posto del giudice. Il
giudice non può mai compiere un rinvio generico alle valutazioni del perito, oppure semplicemente
ripeterle parola per parola. Piuttosto, deve sempre spiegare con proprie parole perché è d’accordo con
il perito, e soprattutto, spiegare i motivi per cui non ha accolto le critiche dei consulenti tecnici. Allo
stesso modo, il perito deve sempre presentare le sue conclusioni in maniera critica, evidenziando tutte
le ragioni per cui una certa interpretazione potrebbe essere inaffidabile. Il ruolo dei consulenti tecnici è
svolgere ulteriori critiche e osservazioni nei confronti dell’opera del perito, e di fornire più elementi di
valutazione al giudice.

48La ricerca scientifica presenta il vantaggio di essere stata discussa e comprovata in maniera empirica
e pubblica, mediante un processo imparziale di peer-review.

49Ad esempio, perché i metodi di analisi sono innovativi o sperimentali (e quindi la comunità
scientifica non è ancora arrivata ad un grado soddisfacente di peer-review), perché sono proprietari (e

41

dell’approccio usato, caso per caso.50

La seconda esigenza è il corretto funzionamento dello strumento di analisi.51

Idealmente si dovrebbe ridurre la quantità di bug52 al minimo, ma è più realistico53

cercare di fornire la maggiore quantità di documentazione relativa ai bug possibile.54

Infine, l’ultima esigenza è la flessibilità dello strumento di analisi. È preferibile che

ogni strumento si specializzi per l’analisi di un certo tipo di dati,55 e che all’interno di

quell’ambito offra una varietà di metodi di analisi,56 anche mediante l’uso di plug-in

(moduli aggiuntivi) scritti da sviluppatori di terze parti.57

quindi non si vuole rendere pubblico il loro funzionamento nei dettagli), oppure perché sono basati
su tecnologie che per loro natura sono opache (ad esempio, le intelligenze artificiali che sono state
addestrate a classificare il contenuto delle immagini).

50In generale, si deve sempre spiegare il funzionamento del software, e fornire l’accesso ai dati e alle
risorse che sono stati usati per la sua creazione. Più questi elementi sono irragionevoli (ad esempio, si
discostano dai principi fondamentali della materia, senza indicare il motivo), generici (ad esempio, gli
sviluppatori di un approccio proprietario si rifiutano di entrare nei dettagli per mantenere il segreto
industriale), o incompleti (ad esempio, potrebbe essere legalmente o moralmente impossibile fornire
le immagini che sono state usate per addestrare un’intelligenza artificiale a riconoscere foto e video
pedo-pornografici), e più il giudice deve valutare questi approcci con sfavore.

51Dopo che si è dimostrato che il metodo di analisi ha fondamenti scientifici, o che comunque
l’approccio seguito è ragionevole, si deve dimostrare che il metodo di analisi è stato implementato
correttamente nel software.

52Errori di programmazione che portano il programma a compiere operazioni inaspettate o
indesiderate, e quindi compromettono la correttezza dei risultati dell’analisi, e più in generale, il
suo grado di attendibilità.

53Individuare, riprodurre e correggere i bug è un’operazione complessa, che richiede una grande
quantità di tempo e risorse, e spesso si parla di known bugs (bug conosciuti) per indicare il fatto che i
programmatori sono a conoscenza dell’esistenza di un bug, ma non lo hanno corretto subito, per una
varietà di motivi (hanno preferito concentrarsi su altri bug più gravi, non sono ancora certi su come
correggere il bug, correggerlo richiederebbe un investimento di risorse notevole, ecc.).

54Si devono indicare informazioni come quali versioni del software sono viziate dal bug, in che
situazioni si verifica, che effetti produce, ecc. Questa documentazione deve rimanere disponibile anche
dopo che il bug viene corretto in una versione successiva del software, nel caso in cui si debba riesaminare
o ripetere un’analisi svolta con una versione precedente.

55Invece che disperdere e duplicare gli sforzi fra numerosi programmi generici, è preferibile
concentrarli su un numero ristretto di programmi altamente specializzati.

56Il primo motivo è che è difficile prevedere in anticipo i quesiti che potrebbero essere posti dal
giudice all’interno di un caso concreto, e pertanto è meglio avere quanti più strumenti possibile a
disposizione. Il secondo motivo è che se più metodi di analisi hanno la stessa funzione, e operano
secondo tecniche diverse, e queste tecniche sono tutte valide, è possibile confrontare i vari risultati per
giungere ad una valutazione più ponderata. Ad esempio, VirusTotal permette di analizzare un file usando
più di 70 programmi antivirus. Se un ristretto numero di programmi ritiene che il file sia un virus, ma gli
altri non rilevano nulla, molto probabilmente si tratta di un falso positivo. V. VirusTotal, How it works,
2023, https://web.archive.org/web/20231231202321/https://docs.virustotal.com/docs/how-it-works.

57Gli sviluppatori di terze parti sono gli sviluppatori diversi dagli sviluppatori originali. Se gli

42

https://web.archive.org/web/20231231202321/https://docs.virustotal.com/docs/how-it-works

2.1.5 Presentazione delle conclusioni e contraddittorio

La presentazione è la fase finale del trattamento dei dati informatici, in cui le

valutazioni svolte dal personale tecnico vengono concretamente acquisite all’interno

del dibattimento.58 Questa fase non richiede l’uso di software per il trattamento dei

dati, perché è puramente incentrata sulla discussione di come il software è stato usato

nelle fasi precedenti.59

Le linee-guida per l’ingresso di conoscenze scientifiche all’interno del processo

sono state indicate per la prima volta nel 1923 in Frye v. United States,60 e sono state

riformulate nel 1993 dalla Corte Suprema degli Stati Uniti in Daubert v. Merrel Dow

Pharmaceuticals.61

In Daubert si afferma che il giudice è tenuto a compiere due valutazioni. La prima

riguarda l’ammissibilità della prova scientifica,62 che deve essere fondata su conoscenze

sviluppatori originali non sviluppano più il programma in maniera attiva, gli autori di plug-in possono
continuare a fornire strumenti di analisi migliori e aggiornati, e quindi mantenere in vita il software,
quasi sostituendosi agli sviluppatori originali.

58V. M. Ferrazzano, op. cit., pp. 41–42. Il perito e gli eventuali consulenti tecnici vengono inseriti nelle
liste testimoniali (art. 468 c.p.p.), ed in ogni caso, il giudice acquisisce la relazione finale del perito (art.
227 c.p.p.) e le memorie scritte dai consulenti tecnici (art. 233 co. 1 c.p.p.).

59Il perito ed i consulenti discutono gli strumenti di analisi, i loro fondamenti scientifici, e la validità
ed affidabilità delle conclusioni a cui sono arrivati, in un contraddittorio davanti al giudice.

60L’unico requisito indicato era una general acceptance (generale accettazione) della teoria scientifica
che si voleva far valere nel processo, v. Court of Appeals of District of Columbia, «Frye v. United
States, 293 F. 1013 (D.C. Cir. 1923)», 1923, https://web.archive.org/web/20230202073721/https:
//nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/frye-v-US.pdf.

61Le Federal Rules of Evidence (norme federali in materia di prove) sono state adottate nel 1975, e
permettono l’assunzione di qualsiasi prova, purché non sia vietata dalla legge, o sia irrilevante (Rule
402; cfr. art. 191 co. 1 e art. 190 co. 1 c.p.p.). Una prova è rilevante se permette di determinare se un
certo fatto sia stato commesso o meno (Rule 401; cfr. art. 187 co. 1 c.p.p.). La expert testimony (perizia o
consulenza tecnica) non menziona il requisito della general acceptance degli elementi scientifici che
vengono menzionati dall’esperto (Rule 702), e non è nemmeno possibile aggiungerlo in via interpretativa,
perché mentre è possibile usare le decisioni di common law (decisioni giurisprudenziali) per interpretare
uno statute (legge), questa interpretazione non può essere contra legem (contraria alla legge), ed il
criterio restrittivo in Frye contrasta con il permissive backdrop (spirito permissivo) che ispira le Federal
Rules of Evidence. V. Supreme Court of the United States, «Daubert v. Merrell Dow Pharmaceuticals, Inc.,
509 U.S. 579 (1993)», 1993, https://web.archive.org/web/20221012193634/https://tile.loc.gov/storage-
services/service/ll/usrep/usrep509/usrep509579/usrep509579.pdf, pp. 585–589.

62Ibidem, p. 593.

43

https://web.archive.org/web/20230202073721/https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/frye-v-US.pdf
https://web.archive.org/web/20230202073721/https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/frye-v-US.pdf
https://web.archive.org/web/20221012193634/https://tile.loc.gov/storage-services/service/ll/usrep/usrep509/usrep509579/usrep509579.pdf
https://web.archive.org/web/20221012193634/https://tile.loc.gov/storage-services/service/ll/usrep/usrep509/usrep509579/usrep509579.pdf

scientifiche63 e deve essere rilevante e utile per l’accertamento dei fatti.64

La seconda riguarda l’attendibilità della prova ritenuta ammissibile:65

• La teoria o tecnica scientifica deve essere verificabile, ed è preferibile che sia

stata sottoposta a verificazione;66

• È preferibile (ma non necessario) che la teoria o tecnica sia stata pubblicata e

soggetta a peer-review;67

• Il tasso di errore (conosciuto o potenziale) e l’esistenza e aggiornamento

di standard che regolano la tecnica scientifica devono essere presi in

considerazione;68

• La general acceptance menzionata in Frye continua ad essere rilevante, ma non

è più l’unico fattore.69

In Italia, la sentenza Cozzini del 201070 introduce dei criteri analoghi a quelli

previsti nel caso Daubert, che continuano ad essere riaffermati dalla Cassazione anche

63Pertanto, deve essere ottenuta mediante il metodo scientifico, e deve essere ragionevolmente certa.
Nella scienza non esistono certezze assolute, ma il metodo scientifico permette di creare modelli sempre
più precisi. In particolare, è importante che l’oggetto della deposizione deve essere stato soggetto a
verifica empirica. V. Supreme Court of the United States, op. cit., pp. 589–590.

64Cfr. gli artt. 190. co. 1 e 187 co. 1 c.p.p., v. Supreme Court of the United States, ivi, pp. 590–592.
65L’elenco indicato dalla corte non è tassativo, v. Supreme Court of the United States, ivi, p. 593.
66La possibilità di verificare, confutare o falsificare le teorie caratterizza la scienza, e la distingue

dalle altre forme di ricerca e studio, v. Supreme Court of the United States, ivi, p. 593.
67La pubblicazione è un fattore importante, ma non determinante. Da sola la pubblicazione non è

sufficiente a garantire l’affidabilità della teoria, e viceversa, teorie nuove (ma affidabili) potrebbero non
essere state pubblicate. V. Supreme Court of the United States, ivi, pp. 593–594.

68V. Supreme Court of the United States, ivi, p. 594. Per quanto riguarda l’informatica forense, può
essere difficile misurare il “tasso di errore” del software con precisione matematica, ed è molto più
probabile che il giudizio abbia natura discorsiva. Inoltre, non ci si deve limitare a considerare solo gli
standard più autorevoli, perché l’evoluzione tecnologica potrebbe averli già resi parzialmente obsoleti
nel tempo necessario per la loro preparazione. In particolare, se l’oggetto dell’analisi è nuovo, si deve
considerare anche la ricerca scientifica indipendente, che non è ancora stata formalizzata in standard.

69V. Supreme Court of the United States, ivi, p. 594. Ridurre l’ammissibilità solo al fatto che una teoria
è largamente condivisa significa escludere l’ammissibilità di tutte le teorie che hanno solidi fondamenti
scientifici, ma che semplicemente non hanno ancora ricevuto sufficiente attenzione dalla comunità
scientifica. Questo è il caso tipico dell’informatica forense: dato che l’oggetto di studio è in continua
evoluzione, sarebbe impossible riuscire ad ottenere un largo consenso su ogni singolo metodo di analisi.

70V. § 16 in Cassazione Penale, Quarta Sezione, «Sent. n. 43786/2010», 2010, https://web.archive.org/
web/20211128212823/https://olympus.uniurb.it/index.php?option=com_content&view=article&id=39
19:cassazione-penale-sez-4-13-dicembre-2010-n-43786&catid=17&Itemid=138.

44

https://web.archive.org/web/20211128212823/https://olympus.uniurb.it/index.php?option=com_content&view=article&id=3919:cassazione-penale-sez-4-13-dicembre-2010-n-43786&catid=17&Itemid=138
https://web.archive.org/web/20211128212823/https://olympus.uniurb.it/index.php?option=com_content&view=article&id=3919:cassazione-penale-sez-4-13-dicembre-2010-n-43786&catid=17&Itemid=138
https://web.archive.org/web/20211128212823/https://olympus.uniurb.it/index.php?option=com_content&view=article&id=3919:cassazione-penale-sez-4-13-dicembre-2010-n-43786&catid=17&Itemid=138

di recente:71

Al riguardo, mette conto richiamare i criteri di valutazione della prova

scientifica delineati dalla giurisprudenza di legittimità, soprattutto

sulla scorta dei cc.dd. canoni Daubert (dalla sentenza nordamericana

Daubert vs Merrel Dow Pharmaceuticals, Inc. 509 U.S. 579, 113 S. Ct.

2786): «Per valutare l’attendibilità di una teoria occorre esaminare gli

studi che la sorreggono. Le basi fattuali sui quali essi sono condotti.

[L]’ampiezza, la rigorosità, l’oggettività della ricerca. Il grado di sostegno

che i fatti accordano alla tesi. La discussione critica che ha accompagnato

l’elaborazione dello studio, focalizzata sia sui fatti che mettono in

discussione l’ipotesi sia sulle diverse opinioni che nel corso della

discussione si sono formate. L’attitudine esplicativa dell’elaborazione

teorica. Ancora, rileva il grado di consenso che la tesi raccoglie nella

comunità scientifica. Infine, dal punto di vista del giudice, che risolve

casi ed esamina conflitti aspri, è di preminente rilievo l’identità, l’autorità

indiscussa, l’indipendenza del soggetto che gestisce la ricerca, le finalità

per le quali si muove» (Sez. 4, n. 43786 del 17/09/2010, Cozzini, Rv.

248943-4).

In Daubert si afferma che l’uso di criteri più flessibili rispetto alla general acceptance

non risulterà nell’ingresso di teorie pseudo-scientifiche nel processo, perché il processo

accusatorio ha istituti per esaminare prove ammissibili, ma di dubbia affidabilità.72

Allo stessomodo, nella sentenza Knox del 2015 si afferma che per quanto riguarda la

valutazione della prova “[l]e coordinate di riferimento dovranno essere quelle afferenti

al principio del contraddittorio ed al controllo del giudice sul processo di formazione

71Cassazione Penale, Quinta Sezione, «Sent. n. 1801/2022», 2022, https://web.archive.org/web/2023
1222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpe
n&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf, p. 21.

72Ad esempio, l’esame incrociato e l’ammissione di prove contrarie. V. Supreme Court of the United
States, op. cit., pp. 595–596.

45

https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf
https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf
https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf

della prova”.73

È possibile notare degli elementi in comune fra il diritto processuale ed il metodo

scientifico: entrambi cercano di approssimare la realtà mediante un confronto fra più

parti;74 all’interno del confronto, si deve spiegare e difendere il proprio ragionamento;75

infine, entrambi favoriscono la pubblicazione delle informazioni e la trasparenza nel

procedimento.76

Dato che l’informatica forense ha una doppia natura, giuridica e scientifica, a

maggior ragione deve essere ispirata da questi elementi; e dato che per l’esercizio

dell’informatica forense è strettamente necessario usare del software, anche gli

strumenti di analisi devono essere sviluppati ed utilizzati secondo i principi del

confronto fra più parti, della motivazione del proprio operato, e della trasparenza.

2.2 Inquadramento legale e tecnico del software

2.2.1 Definizione di software libero

Il modello di software ideale per soddisfare le esigenze appena indicate è il software

libero.77 Il software può essere definito libero se sviluppato e distribuito al pubblico in
73Il “controllo del giudice” non va inteso come un ritorno al modello inquisitorio, ma come la necessità

che il giudice valuti attivamente l’affidabilità della prova scientifica, invece di accettarla in maniera
passiva. V. Cassazione Penale, Quinta Sezione, «Sent. n. 36080/2015», 2015, https://web.archive.org/we
b/20171104040843/https://www.giurisprudenzapenale.com/wp-content/uploads/2015/09/cass-pen-2015-
36080.pdf, pp. 34–35.

74Nel contraddittorio, le parti cercano di approssimare la realtà storica criticando e cercando di
contraddire gli argomenti dell’altra parte. Nella peer-review, gli scienziati cercano di approssimare il
funzionamento dei fenomeni naturali creando e falsificando ipotesi e teorie.

75Le parti devono indicare in maniera dettagliata le teorie scientifiche seguite, le attività pratiche
svolte, ed il processo logico che è stato seguito per arrivare ad una certa conclusione. Lamotivazione deve
essere comprensibile, in modo che sia criticabile e falsificabile, e deve essere sufficientemente dettagliata,
in modo che l’altra parte processuale o gli altri scienziati possano provare a ripetere l’esperimento e
riprodurre i risultati.

76Nel diritto processuale l’obbligo del segreto cade dopo la conclusione delle indagini preliminari (art.
329 c.p.p.), le udienze sono pubbliche a pena di nullità (art. 471 co. 1 c.p.p.) e i casi in cui si procede a
porte chiuse sono l’eccezione (art. 472 c.p.p.). Nel metodo scientifico, qualsiasi dettaglio o informazione
che non viene pubblicata rende la peer-review più difficoltosa, e pertanto diminuisce la qualità della
ricerca scientifica.

77In inglese free software, dove free va inteso come “libero da vincoli”, e non “gratuito”, v. Free Software
Foundation, «What is Free Software?», 2023, https://web.archive.org/web/20231230224545/https:

46

https://web.archive.org/web/20171104040843/https://www.giurisprudenzapenale.com/wp-content/uploads/2015/09/cass-pen-2015-36080.pdf
https://web.archive.org/web/20171104040843/https://www.giurisprudenzapenale.com/wp-content/uploads/2015/09/cass-pen-2015-36080.pdf
https://web.archive.org/web/20171104040843/https://www.giurisprudenzapenale.com/wp-content/uploads/2015/09/cass-pen-2015-36080.pdf
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html

maniera da garantire quattro libertà fondamentali:

The freedom to run the program as you wish, for any purpose (freedom

0).

The freedom to study how the program works, and change it so it does

your computing as you wish (freedom 1). Access to the source code is a

precondition for this.

The freedom to redistribute copies so you can help others (freedom 2).

The freedom to distribute copies of your modified versions to others

(freedom 3). By doing this you can give the whole community a chance

to benefit from your changes. Access to the source code is a precondition

for this.78

Se anche solo una di queste libertà è limitata79 si parla di software non-libero o

proprietario.80

//www.gnu.org/philosophy/free-sw.en.html, sez. “Free software can be commercial”.
78La libertà di eseguire il programma come si desidera, per qualsiasi scopo (libertà 0). La libertà di

studiare come il programma funziona, e modificarlo in modo che funzioni a proprio piacimento (libertà
1). L’accesso al codice sorgente è una condizione necessaria per questa libertà. La libertà di ridistribuire
copie così da aiutare gli alti (libertà 2). La libertà di modificare copie della tua versione modificata
ad altri (libertà 3). Così facendo, puoi offrire all’intera comunità la possibilità di beneficiare delle tue
modifiche. L’accesso al codice sorgente è una condizione necessaria per questa libertà.

79È irrilevante che la limitazione sia minima, ipotetica, difficile da far valere nella pratica, fondata
su motivi etici, ecc. Ad esempio, la licenza di jsmin, scritto da Douglas Crockford, contiene la frase
“The Software shall be used for Good, not Evil.” (il software dovrà essere usato per il bene, non per
il male). Questa clausola è considerata una limitazione di una delle libertà fondamentali (v. Free
Software Foundation, «What is Free Software?», cit, sez. “The freedom to run the program as you
wish”, e Free Software Foundation, «Various Licenses and Comments about Them», 2023, https:
//web.archive.org/web/20231018041504/https://www.gnu.org/licenses/license-list.html, sez. “The JSON
License”), e pertanto rende il programma non-libero. V. R. Grove, JSMin isn’t welcome on Google Code,
2009, https://web.archive.org/web/20230114224625/https://wonko.com/post/jsmin-isnt-welcome-on-
google-code/.

80Free Software Foundation, «What is Free Software?», cit., sez. “The four essential freedoms”.

47

https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231018041504/https://www.gnu.org/licenses/license-list.html
https://web.archive.org/web/20231018041504/https://www.gnu.org/licenses/license-list.html
https://web.archive.org/web/20230114224625/https://wonko.com/post/jsmin-isnt-welcome-on-google-code/
https://web.archive.org/web/20230114224625/https://wonko.com/post/jsmin-isnt-welcome-on-google-code/

2.2.2 Codice sorgente e codice macchina

L’esercizio delle libertà presuppone la possibilità di accedere al source code (codice

sorgente). Il codice sorgente viene definito come:81

[T]he preferred form of the program for making changes in. Thus, whatever

form a developer changes to develop the program is the source code of that

developer’s version.82

È preferibile usare una interpretazione estensiva di questa definizione, che includa

oltre al codice propriamente detto83 anche qualsiasi altro file che sia necessario o utile

per l’uso del programma,84 o la cui presenza o contenuto altera il comportamento del

programma in qualsiasi modo.85

Il codice sorgente si contrappone al machine code (codice macchina), la forma

del programma che può essere eseguita direttamente dalla macchina.86 Il codice

sorgente viene trasformato in codice macchina da un programma chiamato compiler

(compilatore).87

Il codice macchina presenta caratteristiche che ostacolano l’esercizio delle libertà

81Ivi, sez. “The freedom to study the source code and make changes”.
82La rappresentazione del programma preferita per apportare cambiamenti. Pertanto, qualsiasi

rappresentazione lo sviluppatore cambi al fine di sviluppare il programma è il codice sorgente di quella
versione del programma.

83File di testo che contengono istruzioni scritte in un determinato linguaggio di programmazione.
84Ad esempio, file di configurazione, o file che contengono comandi per compilare ed installare il

programma.
85Anche se il cambiamento riguarda solo come i dati vengono presentati all’utente, e non come

vengono elaborati, quel file deve essere considerato parte del codice sorgente di quel programma.
86Per “macchina” si intende più precisamente il processore, che è in grado di comprendere solo un

insieme di istruzioni limitato.
87Salvo bug nel compilatore, il codice sorgente ed il codice macchina rappresentano le stesse istruzioni,

con la differenza che sono espresse in due linguaggi diversi. Il codice sorgente è scritto in un linguaggio
più vicino ai linguaggi naturali, e quindi è più facile da leggere, scrivere e modificare per gli sviluppatori,
ma non può essere eseguito. Viceversa, il codice macchina è un linguaggio che consiste solo in una
lunga lista di istruzioni estremamente semplici, ed è difficile da modificare a mano, ma può essere
eseguito dalla macchina.

48

fondamentali: non può essere sempre eseguito,88 perde la struttura originale89 e risulta

“offuscato”.90

2.2.3 Software e l.d.a.

Nell’ordinamento italiano, i programmi per elaboratore vengono espressamente

equiparati ad un’opera letteraria (art. 1 co. 2 e art. 2 n. 8 l.d.a.),91 indipendentemente

dal fatto che il software sia espresso come codice sorgente o codice macchina.92

Questo inquadramento ha una serie di conseguenze. Alcune sono negative, perché

sono funzionali ad ostacolare lo studio del software non-libero da parte dell’informatica

forense.93 Altre sono positive, perché (seppur entro certi limiti) permettono l’esercizio

88Il codice sorgente può sempre essere ricompilato e quindi funzionare su più processori. Questo
limita la libertà di eseguire il programma. Il codice macchina consiste in un insieme chiuso di possibili
istruzioni (instruction set) che vengono codificate in codice binario secondo un formato preciso. Questi
elementi variano a seconda dell’architettura del processore (x86, AMD64, ARM, etc.), a seconda del
momento di produzione del processore (i processori più nuovi supportano più istruzioni), ecc. Pertanto,
il codice macchina è tendenzialmente legato all’architettura per cui è stato compilato.

89Questo limita la libertà di studiare e modificare il programma, perché diventa necessario ricostruire
il suo funzionamento, e non è possibile fare riferimento al codice già esistente per apportare modifiche.
Ad esempio, il codice sorgente può essere diviso in numerosi file, ma la compilazione risulta in un
singolo file; informazioni come il nome delle variabili, dei valori nelle strutture di dati, delle funzioni,
ecc., sono sostituite da riferimenti ad indirizzi di memoria, perché è l’unico formato che il processore
comprende; i commenti che spiegano come il codice funziona vengono eliminati; ecc.

90Questo limita la libertà di studiare il programma, perché diventa difficile seguire il suo
funzionamento. La perdita della struttura originale è già una prima forma di “offuscamento” del codice
sorgente. Inoltre, il compilatore può riscrivere le istruzioni del codice macchina in modo da raggiungere
lo stesso risultato, ma in maniera più efficiente (compiler optimizations), che rende ancora più difficile
capire il funzionamento del codice. Ad esempio, un’istruzione usata per calcolare gli indirizzi di memoria
può essere anche usata per compiere calcoli aritmetici (v. B. Visness, Using the LEA instruction for
arbitrary arithmetic, 2022, https://web.archive.org/web/20220630160511/https://handmade.network
/forums/articles/t/7111-using_the_lea_instruction_for_arbitrary_arithmetic). Ancora, è possibile
introdurre del vero e proprio offuscamento intenzionale, ricombinando il codice in maniera da rendere
estremamente difficile capire il suo funzionamento (ad esempio, v. xoreaxeaxeax, movfuscator, 2020,
https://github.com/xoreaxeaxeax/movfuscator/tree/ea37dae93fbcd93f642c71a53878da588bd7ddb4).

91Legge 22 aprile 1941, n. 633, “Protezione del diritto d’autore e di altri diritti connessi al suo esercizio.”
92Come indicato espressamente dall’art. 10(1) dell’accordo TRIPs (v. https://web.archive.org/web/2023

0929163013/https://biblioteche.cultura.gov.it/it/documenti/Servizio_III/4_accordo_trips_1994_x1x.pdf)
e come desumibile dall’art. 4 del trattato OMPI sul diritto d’autore (v. https://web.archive.org/web/2023
1230130759/https://biblioteche.cultura.gov.it/it/documenti/Servizio_III/5_trattato_ompi_sul_diritto_d
_autore_wct_1996_x1x.pdf).

93I software utilizzati dagli utenti tendono ad essere sistemi operativi e programmi proprietari. Da un
punto di vista tecnico, l’analisi è già difficoltosa, ma il diritto d’autore permette l’aggiunta di ulteriori
restrizioni, che complicano ulteriormente il lavoro dei tecnici. Ancora peggio, gli strumenti di analisi

49

https://web.archive.org/web/20220630160511/https://handmade.network/forums/articles/t/7111-using_the_lea_instruction_for_arbitrary_arithmetic
https://web.archive.org/web/20220630160511/https://handmade.network/forums/articles/t/7111-using_the_lea_instruction_for_arbitrary_arithmetic
https://github.com/xoreaxeaxeax/movfuscator/tree/ea37dae93fbcd93f642c71a53878da588bd7ddb4
https://web.archive.org/web/20230929163013/https://biblioteche.cultura.gov.it/it/documenti/Servizio_III/4_accordo_trips_1994_x1x.pdf
https://web.archive.org/web/20230929163013/https://biblioteche.cultura.gov.it/it/documenti/Servizio_III/4_accordo_trips_1994_x1x.pdf
https://web.archive.org/web/20231230130759/https://biblioteche.cultura.gov.it/it/documenti/Servizio_III/5_trattato_ompi_sul_diritto_d_autore_wct_1996_x1x.pdf
https://web.archive.org/web/20231230130759/https://biblioteche.cultura.gov.it/it/documenti/Servizio_III/5_trattato_ompi_sul_diritto_d_autore_wct_1996_x1x.pdf
https://web.archive.org/web/20231230130759/https://biblioteche.cultura.gov.it/it/documenti/Servizio_III/5_trattato_ompi_sul_diritto_d_autore_wct_1996_x1x.pdf

delle libertà relative al software libero.

La conseguenza più immediata è Il “diritto esclusivo” dell’autore di creare copie

dell’opera (software) previsto in generale dall’art. 13 l.d.a., e in maniera specifica per i

“programmi per elaboratore” dall’art. 64-bis lett. a l.d.a.94

Una seconda conseguenza è la possibilità di limitare l’uso delle copie95 mediante

l’impiego di misure tecnologiche,96 come previsto dall’art. 11 del trattato OMPI sul

diritto d’autore97 e dall’art. 102-quater l.d.a.:

1. I titolari di diritti d’autore […] possono apporre sulle opere o suimateriali

protetti misure tecnologiche di protezione efficaci che comprendono tutte

le tecnologie, i dispositivi o i componenti che, nel normale corso del loro

funzionamento, sono destinati a impedire o limitare atti non autorizzati

dai titolari dei diritti.

2. Le misure tecnologiche di protezione sono considerate efficaci nel

caso in cui l’uso dell’opera o del materiale protetto sia controllato

dai titolari tramite l’applicazione di un dispositivo di accesso o di un

procedimento di protezione, quale la cifratura, la distorsione o qualsiasi

usati dai tecnici tendono ad essere proprietari, e quindi senza l’accesso al codice sorgente è difficile,
se non impossibile, spiegare come funzionano in maniera dettagliata all’interno del contraddittorio, e
sapere se funzionano correttamente.

94Sono previste delle limitazioni ed eccezioni a questo diritto. Ad esempio, è possibile riprodurre
opere “a fini di pubblica sicurezza, nelle procedure […] giudiziarie” (art. 67 l.d.a.). Il processo penale
potrebbe essere considerato una procedura penale con fini di sicurezza. Ancora, è possibile riprodurre
le opere “per uso personale”, purché non vengano distribuite al pubblico (art. 68 co. 1 e 6 l.d.a.).

95Si parla di “uso” e non “creazione” delle copie, perché è sempre possibile copiare i dati informatici.
L’unico modo per evitare la creazione di copie non autorizzate è applicare dei meccanismi che
impediscono l’esecuzione del software copiato senza autorizzazione. Ad esempio, si può controllare la
presenza di dongle USB che contengono una licenza per l’uso del software in formato digitale, oppure
si possono contattare i server dello sviluppatore per verificare che l’utente sia autorizzato ad usare
il programma, ecc. L’efficacia di queste misure di protezione si basa sulle caratteristiche del software
compilato: sono difficili da rimuovere perché è difficile capire quali parti del codice macchina contengono
le istruzioni necessarie al loro funzionamento.

96La legge permette e protegge l’uso di misure tecnologiche che possono limitare la libertà di
eseguire il programma. Spesso ci si riferisce all’uso di queste misure con l’acronimo DRM (digital rights
management, gestione digitale dei diritti). Gli sviluppatori del software non sono tenuti ad usare questo
tipo di misure (v. Jørgen Blomqvist, Primer on International Copyright and Related Rights, Edward Elgar
Publishing, 2014, 207), ed in questo caso si parla di opere che sono DRM-free (libere da DRM).

97Ibidem, p. 205.

50

altra trasformazione dell’opera o del materiale protetto, ovvero sia

limitato mediante un meccanismo di controllo delle copie che realizzi

l’obiettivo di protezione.

La l.d.a. non indica un elenco di exceptions and limitations (“eccezioni e limitazioni”)

che permettono di rimuovere o aggirare le misure di sicurezza.98 Tuttavia, anche se

la legge prevedesse esplicitamente questa possibilità, sarebbe preferibile evitare di

rimuovere le misure di protezione per ragioni tecniche.99

Una terza conseguenza è la possibilità di studiare il funzionamento del programma,

che viene data senza limitazioni significative ed è rafforzata dalla previsione di nullità

per le clausole contrarie (art. 64-ter co. 3 l.d.a.):

Chi ha il diritto di usare una copia del programma per elaboratore

può, senza l’autorizzazione del titolare dei diritti, osservare, studiare

o sottoporre a prova il funzionamento del programma, allo scopo di

determinare le idee ed i principi su cui è basato ogni elemento del

programma stesso, qualora egli compia tali atti durante operazioni di

caricamento, visualizzazione, esecuzione, trasmissione o memorizzazione

del programma che egli ha il diritto di eseguire. Le clausole contrattuali

pattuite in violazione del presente comma e del comma 2 sono nulle.

L’ultima conseguenza è la possibilità di eseguire il reverse-engineering (“ingegneria

a ritroso”),100 ma per il solo fine dell’interoperabilità101 (art. 64-quater co. 1 l.d.a.):
98L’art. 102-quater co. 3 afferma solo che resta salva la disciplina in generale sui programmi per

elaboratore. Alcuni stati hanno ammesso la possibilità di rimuovere le misure di sicurezza, ma solo
in casi limitati o eccezionali (ad esempio, per permettere l’uso da parte dell’autorità giudiziaria, o per
ragioni di sicurezza nazionale). V. J. Blomqvist, op. cit., p. 208.

99Per essere efficace, il DRM deve essere difficile da rimuovere, ma più il funzionamento del DRM è
complesso, e quindi più è difficile sapere quali istruzioni nel codice macchina vanno rimosse, e maggiore
è il rischio di andare a modificare anche il programma in maniera difficilmente imprevedibile. Questo
margine di incertezza è inaccettabile nel software scientifico.

100Laddove la software engineering (ingegneria informatica) costruisce il software, la reverse-
engineering serve a capire come il software è stato costruito. Consiste nell’analisi del codice macchina,
già compilato, per studiare ed eventualmente cercare di ricostruire un’approssimazione del codice
sorgente originale.

101L’interoperabilità è la “[c]apacità di due o più sistemi, reti, mezzi, applicazioni o componenti, di

51

L’autorizzazione del titolare dei diritti non è richiesta qualora la

riproduzione del codice del programma di elaboratore e la traduzione

della sua forma ai sensi dell’art. 64-bis, lettere a) e b), compiute al fine

di modificare la forma del codice, siano indispensabili per ottenere le

informazioni necessarie per conseguire l’interoperabilità […]

L’interoperabilità non può sconfinare nella creazione di “software sostanzialmente

simile” (co. 2):

Le disposizioni di cui al comma 1 non consentono che le informazioni

ottenute in virtù della loro applicazione […] siano utilizzate per lo sviluppo,

la produzione o la commercializzazione di un programma per elaboratore

sostanzialmente simile nella sua forma espressiva, o per ogni altra attività

che violi il diritto di autore.

Infine, è di nuovo prevista la nullità per clausole contrattuali contrarie ai commi

precedenti (co. 3).

Per quanto riguarda l’informatica forense, l’attività di analisi dei dati informatici

rientra nella definizione di interoperabilità,102 e non è “sostanzialmente simile” al

programma originale.103

Gli artt. 64-ter e 64-quater l.d.a. sono estremamente importanti per l’informatica

forense. Il primo permette di studiare il software proprietario, e quindi di creare un

scambiare informazioni tra loro e di essere poi in grado di utilizzarle.” V. Treccani.it, Interoperabilità,
2008, https://web.archive.org/web/20231228151041/https://www.treccani.it/enciclopedia/interoperabilit
a_(Enciclopedia-della-Scienza-e-della-Tecnica)/.

102Normalmente, quando si parla di interoperabilità si pensa alla possibilità di aprire i file di Word (in
formato DOC e DOCX) in programmi come LibreOffice, o di aprire i file di Photoshop (in formato PSD)
in programmi come GIMP, ecc. In altre parole, si pensa all’uso di quei dati all’interno di programmi
non specializzati, da parte di utenti ordinari. Tuttavia, non c’è una differenza significativa fra un utente
che apre il file per visualizzarlo ed eventualmente modificarlo, ed un tecnico che lo apre per analizzarlo,
in entrambi i casi è necessario che il programma sia in grado di leggere quel formato. Pertanto, si può
comunque parlare di interoperabilità.

103I programmi di analisi spesso non hanno bisogno di modificare o scrivere i dati, ma solo di
leggerli, perché è molto probabile che l’analisi venga svolta con algoritmi ad hoc, sviluppati in maniera
indipendente rispetto al programma originale. Pertanto, è difficile parlare di una somiglianza sostanziale,
quando le funzioni sono radicalmente diverse.

52

https://web.archive.org/web/20231228151041/https://www.treccani.it/enciclopedia/interoperabilita_(Enciclopedia-della-Scienza-e-della-Tecnica)/
https://web.archive.org/web/20231228151041/https://www.treccani.it/enciclopedia/interoperabilita_(Enciclopedia-della-Scienza-e-della-Tecnica)/

modello del suo funzionamento secondo il metodo scientifico.104 Il secondo permette

di creare strumenti di analisi che sono in grado di usare i formati proprietari.105

2.2.4 Licenze d’uso del software libero nell’ordinamento italiano

I contratti di licenza d’uso106 del software sono un modello di origine statunitense

in cui il licenziante (generalmente, chi sviluppa il software) concede al licenziatario

(chi ne ottiene una copia) vari diritti, a titolo gratuito o oneroso.

Il software proprietario usa licenze ad hoc, che vietano (espressamente o

implicitamente)107 l’esercizio delle libertà fondamentali del software libero. È possibile

limitare anche la libertà più fondamentale, la possibilità di eseguire il software (art.

64-bis co. 1 lett. a).108

Il software libero usa generalmente delle licenze standard, che possono essere

chiamate free software licenses,109 open source licenses,110 o più genericamente, FOSS

licenses (free and open-source licenses, licenze per software libero e a sorgente

disponibile).111

104In sua assenza, l’attività di studio sarebbe una continua violazione del diritto d’autore.
105In sua assenza, sarebbe impossible sviluppare strumenti di analisi in grado di leggere i formati

proprietari e non documentati pubblicamente (come ad esempio, il filesystem NTFS di Windows).
106Il termine “licenza” è un calco linguistico dall’inglese license. In italiano le “licenze” propriamente

dette riguardano la possibilità di sfruttare economicamente il diritto di privativa industriale (come
marchi e brevetti). V. Antonino Geraci, «I contratti di licenza d’uso del software», Università degli Studi
di Parma, 2015, https://www.repository.unipr.it/handle/1889/2715, pp. 7–8. Nel seguito della trattazione,
le espressioni “contratto di licenza d’uso” e “licenza” saranno usati in maniera intercambiabile.

107Per concedere l’uso dei diritti, è necessario indicarli espressamente e per iscritto (artt. 109 e 110
l.d.a.). Pertanto, non indicare che è possibile eseguire liberamente il software, crearne copie, modificarlo,
ecc. è funzionalmente equivalente a negare espressamente queste facoltà.

108Ad esempio, imponendo dei limiti riguardo al tipo di hardware su cui il software può essere
eseguito, sul numero di utilizzatori simultanei, ecc., e questi termini contrattuali possono essere fatti
valere mediante l’uso di misure di sicurezza, che impediscono l’esecuzione del software in caso di loro
violazione.

109Se rispettano la definizione di free software, v. Free Software Foundation, «Various Licenses and
Comments about Them», cit.

110Se rispettano la definizione di open source software della OSI (v. Open Source Initiative, «The Open
Source Definition», 2007, https://web.archive.org/web/20231231152615/https://opensource.org/osd/).
Per un elenco, v. Open Source Initiative, «OSI Approved Licenses», 2024, https://web.archive.org/web/
20240106034506/https://opensource.org/licenses/.

111In alcuni casi si usa l’espressione FLOSS invece che FOSS, per includere anche l’aggettivo libre.
Libre ha lo stesso significato di free, ma non presenta la stessa ambiguità semantica.

53

https://www.repository.unipr.it/handle/1889/2715
https://web.archive.org/web/20231231152615/https://opensource.org/osd/
https://web.archive.org/web/20240106034506/https://opensource.org/licenses/
https://web.archive.org/web/20240106034506/https://opensource.org/licenses/

Per quanto riguarda il software libero, è preferibile evitare di usare licenze meno

conosciute,112 o peggio ancora, scrivere una licenza originale. Piuttosto, è consigliabile

usare le licenze FOSS più comuni,113 per vari motivi: le licenze sono contratti, e

quindi è opportuno che siano redatte da esperti,114 le licenze più importanti sono state

usate in procedimenti giudiziari,115 e la compatibilità fra le licenze più utilizzate è già

conosciuta.116

Le licenze FOSS possono essere utilizzate anche nell’ordinamento giuridico italiano.

È preferibile considerare una licenza FOSS un contratto atipico,117 e di evitare di forzarla

negli schemi dei contratti tipici.118 La licenza trasferisce dei diritti a chi riceve una

copia del software119 a titolo gratuito.120

112Ad esempio, è preferibile evitare licenze come la Unlicense o la WTFPL, e sostituirle con le licenze
0BSD o MIT. V. C. Morgan, Don’t use the Unlicense: it’s an inferior license wrapped in an atrocious name.,
2022, https://web.archive.org/web/20230519081106/https://chrismorgan.info/blog/unlicense/, e AA. VV.,
Should I use the WTFPL for my FLOSS project?, 2015, https://web.archive.org/web/20230131102031/https:
//opensource.stackexchange.com/questions/1359/should-i-use-the-wtfpl-for-my-floss-project.

113Ad esempio, le licenze GPL, MIT o Apache 2.0.
114Le licenze devono rispettare la legge, e devono essere interpretate per valutare quali effetti

producono. È sempre preferibile che un contratto sia scritto da un esperto in materie legali, e faccia uso
di clausole standard, in modo da minimizzare ambiguità o disaccordi nell’interpretazione.

115Questo significa che si è formato un precedente sulla validità ed interpretazione della licenza. Per
una lista di casi riguardanti la GPL, v. AA. VV., Have there been any lawsuits involving breach of open
source licences?, 2021, https://web.archive.org/web/20240110160950/https://opensource.stackexchange.c
om/questions/11452/have-there-been-any-lawsuits-involving-breach-of-open-source-licences.

116Uno dei vantaggi più importanti del software libero è la possibilità di condividere e riutilizzare il
codice sorgente fra più progetti. A questo fine, è necessario verificare che le licenze con cui i componenti
sono distribuiti siano compatibili fra di loro, e che i loro termini non si contraddicano. Questa analisi
deve essere svolta una sola volta se tutti usano le stesse licenze, ma andrebbe fatta caso per caso se
ciascuno usasse una propria licenza. V. Richard Stallman, «License Compatibility and Relicensing»,
2021, https://www.gnu.org/licenses/license-compatibility.html.en.

117Il codice civile ammette la trasmissione di diritti anche mediante contratti atipici (art. 1322 c.c.).
118Ad esempio, in passato le licenze sono state qualificate come un contratto di locazione che ha ad

oggetto l’uso del software (v. A. Geraci, op. cit., p. 21), oppure come un contratto di compravendita che
ha per oggetto la trasmissione del diritto di usare il software (v. A. Geraci, ivi, p. 23). Tuttavia, queste
ricostruzioni presentano problemi. Ad esempio, locazione e compravendita riguardano solo l’uso del
software (il software libero fornisce più diritti all’utente), sono contratti a titolo oneroso (il software
libero di solito viene distribuito gratuitamente), non sono state pensate per il software (il software
presenta caratteristiche particolari), ecc.

119I diritti che conseguono alla creazione dell’opera possono essere trasmessi mediante contratto, che
deve avere forma scritta (artt. 107 co. 1 e 110 l.d.a). Si può intendere trasferito qualsiasi diritto contenuto
nella l.d.a. il cui esercizio sia necessario per l’esercizio delle libertà che caratterizzano il software libero.

120Il software libero può essere usato per scopi commerciali, e può formare oggetto di vendita, ma
le libertà associate al software libero non possono essere vendute. In altre parole, gli sviluppatori
originali possono vendere una copia del programma, ma chiunque acquista quella copia è poi libero

54

https://web.archive.org/web/20230519081106/https://chrismorgan.info/blog/unlicense/
https://web.archive.org/web/20230131102031/https://opensource.stackexchange.com/questions/1359/should-i-use-the-wtfpl-for-my-floss-project
https://web.archive.org/web/20230131102031/https://opensource.stackexchange.com/questions/1359/should-i-use-the-wtfpl-for-my-floss-project
https://web.archive.org/web/20240110160950/https://opensource.stackexchange.com/questions/11452/have-there-been-any-lawsuits-involving-breach-of-open-source-licences
https://web.archive.org/web/20240110160950/https://opensource.stackexchange.com/questions/11452/have-there-been-any-lawsuits-involving-breach-of-open-source-licences
https://www.gnu.org/licenses/license-compatibility.html.en

2.2.5 Licenza GPL

La licenza GNU GPL (GNU General Public License) è una licenza copyleft121 che

strumentalizza il diritto d’autore per garantire le libertà previste dal software libero.

La GPL afferma esplicitamente la possibilità di distribuire copie non modificate del

programma:122

Youmay convey verbatim copies of the Program’s source code as you receive it,

in any medium, provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice; keep intact all notices stating

that this License and any non-permissive terms added in accord with section

7 apply to the code; keep intact all notices of the absence of any warranty;

and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and

you may offer support or warranty protection for a fee.

La sezione successiva regola la distribuzione di copie modificate:123

Youmay convey a work based on the Program, or the modifications to produce

it from the Program, in the form of source code under the terms of section 4,

provided that you also meet all of these conditions:

di ridistribuirla gratuitamente; viceversa, se il codice è distribuito gratuitamente, ma l’esercizio delle
libertà deve essere acquistato, non si può più parlare di codice libero. V. Free Software Foundation,
«What is Free Software?», cit, sez. “Free software can be commercial”).

121Copyleft è un gioco di parole con copyright (diritto d’autore). Normalmente il diritto d’autore serve
a limitare la ridistribuzione dell’opera, mentre le licenze copyleft garantiscono questo diritto a chiunque
ottenga una copia dell’opera.

122Le copie devono contenere l’indicazione degli autori e della licenza, l’indicazione della limitazione
di responsabilità, e una copia della licenza. È possibile richiedere un pagamento per la copia, oppure
offrire supporto o garanzie a pagamento. V. Free Software Foundation, «GNU General Public License,
Version 3, 29 June 2007», 2007, https://www.gnu.org/licenses/gpl-3.0-standalone.html, sez. “4.
Conveying Verbatim Copies.”.

123In breve, devono essere rilasciate come codice sorgente, si deve indicare l’autore e la data delle
modificazioni (lett. a), l’uso della licenza GPL (lett. b) e l’intera opera derivata deve essere rilasciata
secondo i termini della stessa licenza (lett. c). V. Free Software Foundation, ivi, sez. “5. Conveying
Modified Source Versions.”.

55

https://www.gnu.org/licenses/gpl-3.0-standalone.html

a) The work must carry prominent notices stating that you modified it,

and giving a relevant date.

b) The work must carry prominent notices stating that it is released under

this License and any conditions added under section 7. This requirement

modifies the requirement in section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to

anyone who comes into possession of a copy. […] This License gives

no permission to license the work in any other way, but it does not

invalidate such permission if you have separately received it.

Se un programma è composto di più parti si deve distinguere se sono indipendenti

fra di loro, o se formano un unico programma, perché nel secondo caso la GPL si

estende all’intero programma:

A compilation of a covered work with other separate and independent works,

which are not by their nature extensions of the covered work, and which are

not combined with it such as to form a larger program, in or on a volume of

a storage or distribution medium, is called an “aggregate” if the compilation

and its resulting copyright are not used to limit the access or legal rights of

the compilation’s users beyond what the individual works permit. Inclusion

of a covered work in an aggregate does not cause this License to apply to the

other parts of the aggregate.

La GPL permette la possibilità di fornire copie in forme diverse dal codice sorgente,

ma si devono indicare le modalità per ottenere il codice sorgente.124 L’obiettivo della

GPL è di garantire che il software rimanga sempre libero, e che quindi il codice sorgente

sia sempre disponibile agli utilizzatori.125

124Ad esempio, spesso il software libero viene distribuito come codice macchina, in modo che possa
essere eseguito, senza dover essere compilato. Tuttavia, si deve offrire anche la possibilità di scaricare il
codice sorgente, oppure di richiedere una copia. V. Free Software Foundation, ivi, sez. “6. Conveying
Non-Source Forms.”.

125Si contrappone alle licenze permissive, che invece ammettono la possibilità che il codice sorgente

56

Per raggiungere questo obiettivo la GPL contiene due “clausole virali”: la prima è

che qualsiasi opera derivata deve usare a sua volta la GPL,126 la seconda è che qualsiasi

opera che usa un componente già esistente e rilasciato con la GPL deve usare a sua

volta la GPL.127

2.3 Confronto fra software proprietario e libero

2.3.1 Accesso al codice sorgente

Dopo aver descritto in dettaglio le esigenze del software per l’informatica forense,

e le caratteristiche del software libero, è possibile dimostrare in maniera dettagliata

perché il software libero è un modello migliore rispetto al software proprietario per

quanto riguarda lo sviluppo di strumenti per il trattamento dei dati nell’informatica

forense.

La caratteristica più importante del software libero è la possibilità di leggere il

codice sorgente.128 Gli svantaggi di non poter leggere il codice sorgente nel software

sia incluso all’interno di programmi proprietari, e non richiedono che l’utilizzatore del programma
possa ottenere l’accesso al codice sorgente. V. A. Geraci, op. cit., pp. 72–73.

126È un rapporto “verticale”: se un programmatore modifica del codice distribuito con la GPL, deve
usare la GPL anche per la versione modificata. V. A. Geraci, ivi, p. 71.

127Stallman (l’autore della GPL) ha chiarito che se un programma usa la libreria GPL readline, questo
è sufficiente per rilasciare l’intero programma con la licenza GPL, anche se il programma e la libreria
vengono distribuiti separatamente. Questa proprietà è estremamente utile per il software scientifico,
perché garantisce che continui a rimanere software libero. V. Richard Stallman, Bruno Haible, «Why
CLISP is under GPL», 2000, https://gitlab.com/gnu-clisp/clisp/-/blob/master/doc/Why-CLISP-is-under-
GPL, sez. “From rms@gnu.ai.mit.edu Mon Oct 19 00:06:25 1992”, “From rms@gnu.ai.mit.edu Fri Nov 6
21:31:33 1992” e “From rms@gnu.ai.mit.edu Sat Oct 31 01:29:01 1992”.

128È importante far notare che se l’unica facoltà concessa è la possibilità di leggere il codice sorgente,
ma si vieta la possibilità di modificarlo o distribuirlo, il software non è libero o open source, ma è
proprietario, e più specificamente source-available (con codice sorgente disponibile). Ad esempio, il
codice sorgente per il programma di backup Tarsnap è pubblicamente disponibile (v. https://gith
ub.com/Tarsnap/tarsnap/tree/dfcc22d1e19e6813841aa6bd731be3bb357b252f), ed è possibile
scaricare e compilare il codice sorgente, ma è vietato compilare una versione modificata del software (v.
Tarsnap.com, Tarsnap Terms and Conditions, 2024, https://web.archive.org/web/20240114184641/https:
//www.tarsnap.com/legal.html). Il motivo per cui non si permette di modificarlo è per garantire
che il servizio costi il meno possibile (v. Tarsnap.com, Whys of Tarsnap Terms and Conditions, 2024,
https://web.archive.org/web/20240329083745/http://www.tarsnap.com/legal-why.html, sez. “Why do
people have to use unmodified Tarsnap client code?”).

57

https://gitlab.com/gnu-clisp/clisp/-/blob/master/doc/Why-CLISP-is-under-GPL
https://gitlab.com/gnu-clisp/clisp/-/blob/master/doc/Why-CLISP-is-under-GPL
https://github.com/Tarsnap/tarsnap/tree/dfcc22d1e19e6813841aa6bd731be3bb357b252f
https://github.com/Tarsnap/tarsnap/tree/dfcc22d1e19e6813841aa6bd731be3bb357b252f
https://web.archive.org/web/20240114184641/https://www.tarsnap.com/legal.html
https://web.archive.org/web/20240114184641/https://www.tarsnap.com/legal.html
https://web.archive.org/web/20240329083745/http://www.tarsnap.com/legal-why.html

proprietario sono molteplici:

• Diventa più difficile rilevare e studiare i bug;129

• Non è possibile sapere se i metodi di analisi sono stati implementati

correttamente;130

• Si limita l’esercizio del diritto alla difesa e lo svolgimento del contraddittorio;131

• Per il giudice diventa difficile motivare adeguatamente la sentenza.132

Il problema della motivazione della sentenza quando si usano software ed algoritmi

proprietari è stato analizzato dalla giurisprudenza amministrativa, ma i principi

valgono in generale:133

Tra le indicate garanzie assume primaria importanza il rispetto del

principio di trasparenza, che, com’è noto, trova un immediato corollario

129Dato che non è possibile confrontare come il programma si dovrebbe comportare (secondo il codice
sorgente), e come si comporta nella pratica, può essere difficile sapere se un certo comportamento
è voluto dagli sviluppatori, oppure è un bug, e se si trova un bug, non è possibile studiare il codice
sorgente per trovare la sua origine, e cercare di capire come la sua presenza può aver influito sui risultati.

130Se il programma sta implementando dei metodi di analisi descritti dalla ricerca scientifica, non è
possibile verificare che questi metodi siano stati implementati correttamente, ed il programma nel suo
complesso funzioni correttamente. Ci si può solo fidare, o cercare di verificare l’implementazione con
metodi indiretti (ad esempio, confrontando il comportamento del programma proprietario con altri
programmi, di cui si conosce l’esatto funzionamento), ma entrambe le alternative creano margini di
incertezza difficilmente accettabili.

131Dato che non è possibile sapere in dettaglio come lo strumento è giunto a quel risultato, diventa
difficile riuscire a rispondere all’accusa in maniera specifica: sarebbe come ricevere una sentenza di
condanna che non contiene la motivazione. Se non è possibile difendersi in maniera puntuale, diventa
difficile avere un contraddittorio fruttuoso fra le parti. Si potrebbe ipotizzare una situazione in cui
anche se il codice sorgente non è disponibile, il funzionamento del software proprietario è comunque
ampiamente documentato, e quindi diventa possibile difendersi e avere un contraddittorio fruttuoso.
Tuttavia, un conto è spiegare in maniera astratta come funziona il software, un conto è verificare le
istruzioni contenute nel codice sorgente del programma che è stato usato nel caso concreto, e la loro
corrispondenza al comportamento effettivo del programma quando viene eseguito; il diritto alla difesa
ed il principio del contraddittorio sono soddisfatti solo nel secondo caso.

132Il giudice si trova davanti a due alternative. Può fidarsi dello strumento di analisi proprietario,
usando argomenti come l’appello all’autorità (“è un programma usato da professionisti”, “è sviluppato da
esperti del settore”, “se fosse inaffidabile non avrebbe così largo impiego”, ecc.), oppure può non fidarsi,
adducendo come motivo l’impossibilità di studiare il comportamento del programma. In entrambi i casi,
si tratta di estremi, e non è possibile svolgere una discussione più articolata.

133TAR Campania, Napoli, Sez. III, «Sent. n. 7003/2022», 2022, https://web.archive.org/web/20231222
125832/https://portali.giustizia-amministrativa.it/portale/pages/istituzionale/visualizza?nodeRef=&sch
ema=tar_na&nrg=202105119&nomeFile=202207003_01.html&subDir=Provvedimenti.

58

https://web.archive.org/web/20231222125832/https://portali.giustizia-amministrativa.it/portale/pages/istituzionale/visualizza?nodeRef=&schema=tar_na&nrg=202105119&nomeFile=202207003_01.html&subDir=Provvedimenti
https://web.archive.org/web/20231222125832/https://portali.giustizia-amministrativa.it/portale/pages/istituzionale/visualizza?nodeRef=&schema=tar_na&nrg=202105119&nomeFile=202207003_01.html&subDir=Provvedimenti
https://web.archive.org/web/20231222125832/https://portali.giustizia-amministrativa.it/portale/pages/istituzionale/visualizza?nodeRef=&schema=tar_na&nrg=202105119&nomeFile=202207003_01.html&subDir=Provvedimenti

nell’obbligo di motivazione degli atti amministrativi ex art. 3 l. 241/90

e che non può essere soppresso né ridotto sol per la presenza di un

algoritmo all’interno dell’iter procedimentale.

Invero, il fatto che il provvedimento venga emanato sulla scorta di una

complessa operazione di calcolo produce l’opposto effetto di rafforzare,

per certi versi, l’obbligo motivazionale in capo all’Amministrazione, la

quale dovrà rendere la propria decisione finale non solo conoscibile, ma

anche comprensibile.

Occorre spostare l’attenzione a monte, sulla costruzione dell’algoritmo;

su come i parametri dell’algoritmo vengono scelti (operazione di per sé

soggettiva), e come si combinano tra loro; e ancor prima su come i termini

assunti quale parametro siano stati realizzati.

La questione dell’individuazione dei termini da assumersi per la

costruzione dell’algoritmo indica il momento in cui si opera la scelta

caratterizzata da discrezionalità, sì che a queste fasi preliminari alla

nascita dell’algoritmo devono essere anticipate le garanzie che devono

accompagnare ogni scelta dell’amministrazione.

Fondamentale è a tal fine la garanzia di trasparenza, volte ad assicurare

la conoscibilità della costruzione dell’algoritmo, anche, eventualmente,

in funzione del sindacato sull’atto adottato sulla base dello stesso: “la

decisione amministrativa automatizzata impone al giudice di valutare

in primo luogo la correttezza del processo informatico in tutte le sue

componenti: dalla sua costruzione, all’inserimento dei dati, alla loro

validità, alla loro gestione” (cfr. Cons. St., sez. VI, n. 2270/2019).

In caso di decisione fondata su algoritmo, si richiede pertanto che sia

assicurata una “declinazione rafforzata del principio di trasparenza”, intesa

come “piena conoscibilità della regola espressa in un linguaggio differente

59

da quello giuridico” (Cons. St., sez. VI, n. 2270/2019).

Negli Stati Uniti, la Corte Suprema del Winsconsin è giunta a conclusioni simili

nel caso Loomis. Loomis aveva completato un questionario sul rischio di recidiva

che usava un algoritmo proprietario e segreto, chiamato COMPAS, e sulla base del

risultato di questo questionario, la corte “aveva condannato Loomis a sei anni di

reclusione e cinque anni di extended supervision”. Loomis impugnò questa sentenza,

sostenendo che l’uso dell’algoritmo lo aveva privato del suo diritto ad avere una

sentenza individualizzata, e nel 2016, la Corte Suprema affermò che l’algoritmo non

può essere l’unico strumento usato per fondare una pronuncia di condanna.134

Se la conoscibilità del funzionamento di algoritmi e l’obbligo di motivazione del

giudice vale per le decisioni prese dalla PA, a maggior ragione deve valere all’interno

del processo penale, ed il miglior modo per garantire la conoscibilità è usare il software

libero.

2.3.2 Libertà di riprodurre ed eseguire il programma

L’attività di ricerca nell’informatica forense deve essere soggetta a peer review.

I dati informatici presentano delle caratteristiche particolari, che agevolano questa

attività: possono essere copiati a costo nullo e con esattezza,135 è possible creare una

copia dell’intero sistema in cui l’analisi è stata svolta136 ed è possibile automatizzare

lo svolgimento di operazioni ripetitive mediante script.137

134Lucia Maldonato, «Algoritmi predittivi e discrezionalità del giudice: una nuova sfida per la giustizia
penale», Diritto Penale Contemporaneo, fasc. 2, 2019, https://dpc-rivista-trimestrale.criminaljusticenet
work.eu/pdf/DPC_Riv_Trim_2_2019_maldonato.pdf: 404.

135Uno dei possibili ostacoli alla peer review è la necessità di riprodurre le condizioni dell’esperimento
originale. Nel mondo materiale questo implica costi, e c’è un margine di errore ineliminabile; nel mondo
digitale, copiare i dati non costa nulla, ed è possibile verificare l’esattezza della copia.

136Per funzionare, i programmi hanno bisogno di essere eseguiti all’interno di un sistema operativo.
Per garantire la massima trasparenza riguardo le condizioni in cui l’esperimento è stato compiuto, e
la piena ripetibilità dell’esperimento stesso, è utile fornire una copia forense dell’intero supporto che
contiene il sistema operativo, programmi, configurazioni, ecc. che sono stati usati.

137Uno script consiste in una serie di istruzioni che vengono eseguite automaticamente, senza doverle
scrivere a mano ogni volta. Questo permette di semplificare lo svolgimento di operazioni ripetitive
e meccaniche (ad esempio, convertire i file in un determinato formato, preimpostare un programma,

60

https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2019_maldonato.pdf
https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2019_maldonato.pdf

Se gli strumenti di analisi sono proprietari, la possibilità di creare copie ed eseguirle

incontra limitazioni legali e tecniche.138 Viceversa, se gli strumenti di analisi sono

software libero, chiunque può creare copie ed eseguirle a proprio piacimento, e questo

agevola enormemente il processo di peer review nella fase di ricerca.

La possibilità di eseguire e distribuire il software sono utili anche per il

contraddittorio nel processo, perché permettono a ciascuna parte di ottenere ed usare

l’esatta copia degli strumenti di analisi usati dalla controparte,139 e permettono di

ripetere le analisi nel futuro.140

2.3.3 Libertà di modificare il programma

Il software proprietario è difficile da modificare ed estendere,141 ed è molto meno

resiliente rispetto al software libero.142

La libertà di modificare e distribuire copie modificate del software libero rileva

in vari momenti: nella fase di peer review, i ricercatori possono pubblicare versioni

eliminare i file temporanei o intermedi generati dai programmi, ripristinare lo stato iniziale dell’ambiente
di analisi, ecc.). Gli script possono anche svolgere i vari passi dell’attività di analisi (e quindi diventano
anche una guida pratica riguardo l’uso del programma), e verificare la correttezza dei risultati (e quindi
si automatizza il controllo della riproducibilità dell’esperimento). La peer-review si estende anche al
contenuto di questi script.

138Ad esempio, non è possible creare una copia del sistema operativo Windows, non solo per ragioni
legali, ma anche perché la licenza per utilizzarlo è legata all’hardware del computer. Se l’hardware
cambia in maniera significativa (perché l’ambiente di analisi è stato copiato su un’altra macchina,
che contiene hardware diverso), sarà necessario attivare di nuovo il sistema operativo. V. Microsoft,
Reactivating Windows after a hardware change, 2023, https://web.archive.org/web/20231213170756/https:
//support.microsoft.com/en-us/windows/reactivating-windows-after-a-hardware-change-2c0e962a-
f04c-145b-6ead-fb3fc72b6665. Ragionamenti analoghi possono essere svolti per gli strumenti di analisi
proprietari che richiedono dongle USB per il loro funzionamento.

139Il contraddittorio può essere visto come una sorta di peer review all’interno del processo. Anche se
le finalità sono diverse (nella peer review si cerca di falsificare una teoria, nel contraddittorio si cerca di
difendere la propria posizione), le modalità sono simili (in entrambi i casi si cercano i punti deboli e si
muovono critiche verso l’operato altrui).

140La copia del software può essere conservata insieme alla copia dei dati.
141Specialmente se non viene fornito il codice sorgente.
142Si parla del maintainer hit by a bus problem (problema dello sviluppatore colpito da un autobus).

La possibilità (legale e materiale) di modificare e aggiornare il software proprietario è nelle mani di
poche persone, e pertanto il software proprietario è estremamente fragile, specie se confrontato con il
software libero.

61

https://web.archive.org/web/20231213170756/https://support.microsoft.com/en-us/windows/reactivating-windows-after-a-hardware-change-2c0e962a-f04c-145b-6ead-fb3fc72b6665
https://web.archive.org/web/20231213170756/https://support.microsoft.com/en-us/windows/reactivating-windows-after-a-hardware-change-2c0e962a-f04c-145b-6ead-fb3fc72b6665
https://web.archive.org/web/20231213170756/https://support.microsoft.com/en-us/windows/reactivating-windows-after-a-hardware-change-2c0e962a-f04c-145b-6ead-fb3fc72b6665

corrette o migliorate del software,143 nella fase di sviluppo del software, è possibile

offrire patch144 o modificare il software già esistente per adattarlo alle esigenze

dell’informatica forense;145 e nella fase di analisi, è possibile modificare il software per

gestire le esigenze contingenti.146

Il software libero permette anche la creazione di fork (bivi).147 I fork vengono

generalmente creati per tre motivi: a seguito di disaccordi fra gli sviluppatori,148 per

esplorare nuove soluzioni,149 o perché il progetto originale non è più aggiornato.150

2.3.4 Altre caratteristiche

È possibile confrontare il software proprietario ed il software libero sulla base di

altre caratteristiche:

Per quanto riguarda le modalità di finanziamento, il software proprietario è

generalmente offerto a pagamento,151 ed è sviluppato per ottenere un profitto. Per

143Come supplemento pratico alle critiche o osservazioni teoriche.
144Se qualcuno copia il codice sorgente, e apporta modifiche (miglioramenti, correzioni di bug, ecc.),

può creare una patch (pezza), un file che contiene le istruzioni per applicare queste modifiche al codice
originale. La patch può essere condivisa con gli sviluppatori originali, che possono decidere di integrarla
nel codice originale, in modo che tutti possano beneficiarne.

145Ad esempio, le distribuzioni GNU/Linux sono sistemi operativi liberi, e sono state modificate per
creare distribuzioni specializzate per l’informatica forense.

146Ad esempio, è possibile correggere bug nella propria copia del software, o modificare gli strumenti
di analisi già esistenti, o addirittura aggiungerne di nuovi, se necessario per la risoluzione dei quesiti
posti dal giudice. Tutte queste modifiche dovranno essere oggetto di contraddittorio.

147Un fork è una copia del programma, che viene sviluppata in maniera indipendente rispetto al
progetto originale. Il nome deriva dal fatto che il codice sorgente originale inizia a divergere in due
direzioni separate.

148I disaccordi possono riguardare questioni puramente tecniche, oppure anche questioni relative alle
modalità di sviluppo del progetto. Ad esempio, se un software è sviluppato esclusivamente da una sola
persona, che ha una visione del software estremamente specifica, e non accetta contribuzioni di terze
parti, è possibile fare un fork di quel software, in modo che la partecipazione allo sviluppo del fork sia
più democratica.

149Ad esempio, Rekall era nato come un fork di Volatility per valutare la possibilità di rendere il codice
più modulare, e migliorare le prestazioni e la facilità d’uso, ma successivamente è stato abbandonato, v.
https://github.com/google/rekall/tree/55d1925f2df9759a989b35271b4fa48fc54a1c86.

150Lo sviluppo del software libero può essere ripreso e continuato in qualsiasi momento da chiunque
abbia le capacità tecniche per farlo, è possibile adattare ed aggiornare il software, in maniera che
continui a funzionare anche sui sistemi più recenti.

151Dato che il mercato è ristretto, ed è destinato ai professionisti, le licenze per il software di analisi
forense costano centinaia o migliaia di euro. Pertanto, gli sviluppatori hanno una maggiore disponibilità
economica da reinvestire nello sviluppo del software.

62

https://github.com/google/rekall/tree/55d1925f2df9759a989b35271b4fa48fc54a1c86

aumentare i profitti è possible ridurre i tempi e costi di sviluppo, rischiando di

introdurre technical debt,152 oppure aumentare le vendite, falsando la percezione del

software da parte degli utenti.153

Il software libero di solito non viene venduto154 ma il suo sviluppo può essere

finanziato in vari modi.155

Per quanto riguarda l’uso di tecnologie coperte da segreti industriali o brevetti, il

software proprietario può facilmente fare uso di queste tecnologie.156

Il software libero può usare tecniche di reverse-engineering per i segreti industriali,

e distribuire solo il codice sorgente per le tecnologie coperte da brevetto.157

152Il technical debt (debito tecnico) consiste nel costo (in termini di produttività futura persa) che si
accumula quando i programmatori scrivono codice senza considerare quanto sarà difficile estenderlo e
mantenerlo nel futuro. Si può fare un’analogia con il comprare il veicolo più economico che si trova.
Anche se nel breve termine si risparmia, nel lungo termine l’inaffidabilità del mezzo ed il costo delle
riparazioni nullificheranno il risparmio iniziale. Esistono numerose cause che portano al technical debt,
come la duplicazione del codice, non scrivere commenti, eseguire pochi test di funzionamento, non
semplificare le parti che contengono codice complesso, non usare una guida di stile per il codice, ecc; V.
J.L. Letouzey, D. Whelan, Introduction to the Technical Debt Concept, n.d., https://web.archive.org/web/
20200707112025/https://www.agilealliance.org/wp-content/uploads/2016/05/IntroductiontotheTechnic
alDebtConcept-V-02.pdf.

153Pertanto, i programmatori daranno maggiore priorità alla quantità di funzioni piuttosto che la loro
qualità, e si nasconderanno o minimizzeranno i difetti del software, in modo da farlo sembrare migliore
di quanto effettivamente sia. In ogni caso, l’impossibilità di accedere al codice sorgente rende difficile
valutare l’effettiva qualità del software.

154L’incentivo al suo sviluppo è la creazione di software utile per sé e per gli altri, e pertanto c’è anche
un incentivo a far funzionare il software correttamente.

155Mediante donazioni occasionali o ricorrenti (ad esempio, RPCS3, un progetto per l’emulazione della
console PlayStation 3, ottiene circa 2.000 euro al mese da più di 500 donatori, v. https://web.archive.or
g/web/20231127232724/https://www.patreon.com/nekotekina/about), mediante bounties (“taglie”, ossia
somme offerte agli sviluppatori, in cambio dell’aggiunta di funzionalità), vendendo eccezioni alle licenze
libere (in modo che il software possa essere usato in un prodotto proprietario, v. Richard Stallman,
«Selling Exceptions to the GNU GPL», 2021, https://www.gnu.org/philosophy/selling-exceptions.html),
con contratti di sponsorizzazione (ad esempio, v. https://web.archive.org/web/20240109144332/https:
//curl.se/sponsors.html), offrendo servizi di assistenza tecnica e consulting a pagamento, ecc.

156Ad esempio, il filesystem NTFS, usato daWindows, non è documentato pubblicamente, e per poterlo
analizzare è necessario ottenere una specifica tecnica. È probabile che la Microsoft sia disposta a fornire
la documentazione necessaria a sviluppatori di software di analisi proprietario. Il segreto industriale
rimane protetto da un punto di vista legale con non-disclosure agreements (accordi di confidenzialità), e
da un punto di vista tecnico dalla compilazione e dalla segretezza del codice sorgente. Viceversa, nel
software libero è impossibile mantenere segreti industriali. Per quanto riguarda i brevetti, il costo per il
loro uso può essere trasferito su chi acquista una copia del software proprietario.

157Ad esempio, la tecnica di compressione audio MP3 è stata protetta da un brevetto fino al 2017 (v. A.
Orlowski, MP3 ‘died’ and nobody noticed: Key patents expire on golden oldie tech, 2017, https://web.arch
ive.org/web/20200701131247/https://www.theregister.com/2017/05/16/mp3_dies_nobody_noticed/), ma
il progetto LAME per la codifica e decodifica di file MP3 è sempre stato distribuito (e continua ad essere

63

https://web.archive.org/web/20200707112025/https://www.agilealliance.org/wp-content/uploads/2016/05/IntroductiontotheTechnicalDebtConcept-V-02.pdf
https://web.archive.org/web/20200707112025/https://www.agilealliance.org/wp-content/uploads/2016/05/IntroductiontotheTechnicalDebtConcept-V-02.pdf
https://web.archive.org/web/20200707112025/https://www.agilealliance.org/wp-content/uploads/2016/05/IntroductiontotheTechnicalDebtConcept-V-02.pdf
https://web.archive.org/web/20231127232724/https://www.patreon.com/nekotekina/about
https://web.archive.org/web/20231127232724/https://www.patreon.com/nekotekina/about
https://www.gnu.org/philosophy/selling-exceptions.html
https://web.archive.org/web/20240109144332/https://curl.se/sponsors.html
https://web.archive.org/web/20240109144332/https://curl.se/sponsors.html
https://web.archive.org/web/20200701131247/https://www.theregister.com/2017/05/16/mp3_dies_nobody_noticed/
https://web.archive.org/web/20200701131247/https://www.theregister.com/2017/05/16/mp3_dies_nobody_noticed/

Per quanto riguarda la trasparenza ed imparzialità, il software proprietario non

è sviluppato in maniera trasparente,158 e tende a soddisfare gli interessi, desideri e

necessità di un numero ristretto di persone.159

Il software libero spesso viene sviluppato in maniera trasparente,160 e nel tempo,

tende naturalmente a supportare quanti più formati e funzionalità possible.161

Per quanto riguarda la difficoltà d’uso, il software proprietario ha maggiori risorse

economiche, quindi può investire nella creazione di interfacce grafiche intuitive, e

nella creazione di manuali dettagliati.

Il software libero tende a preferire programmi a riga di comando,162 e l’eventuale

mancanza di documentazione è comunque controbilanciata dalla possibilità di

consultare il codice sorgente.

2.3.5 Impossibilità di usare il software libero per i captatori

Quanto detto finora ha dimostrato che il modello del software libero è il modello

preferibile per l’informatica forense, ma esiste almeno un caso in cui usare il software

libero non è possibile, perché andrebbe a ledere l’efficacia delle indagini.

I captatori sono virus informatici usati dall’autorità giudiziaria a fini investigativi,

capaci di compiere un numero enorme di operazioni, che vanno ad incidere su vari

diritti fondamentali della persona.163 Questi diritti sono “inviolabili”, e possono

distribuito, anche dopo la scadenza del brevetto) esclusivamente come codice sorgente, e non come file
binario (v. https://web.archive.org/web/20210904101433/https://lame.sourceforge.io/lame-faq.en.php,
sez. “Tell me the history of LAME.”).

158Ci sono pochi incentivi a pubblicare il codice sorgente, discutere apertamente i bug, mostrare le
comunicazioni tra sviluppatori, ecc.

159Generalmente, gli sviluppatori originali, oppure chi finanzia il suo sviluppo.
160In generale, dato che il codice è già pubblico, c’è un incentivo a rendere anche altre informazioni

pubbliche.
161Spesso il software libero riesce a supportare anche i formati proprietari, a seguito di reverse-

engineering.
162La mancanza di interfacce grafiche non è uno svantaggio, è semplicemente un paradigma diverso, e

non necessariamente inferiore. Infatti, l’uso di programmi a riga di comando permette di automatizzare
le operazioni con facilità, scrivendole all’interno di file di testo, e quindi di creare metodi di analisi
facilmente ripetibili. Ancora, se le interfacce nei programmi proprietari sono particolarmente intuitive,
probabilmente stanno nascondendo opzioni o informazioni importanti all’utilizzatore.

163La libertà personale (art. 13 Cost.), intesa in senso estensivo come il libero sviluppo della persona

64

https://web.archive.org/web/20210904101433/https://lame.sourceforge.io/lame-faq.en.php

essere limitati solo nei casi e modi indicati dalla legge, ma la legge non disciplina

adeguatamente l’uso di questi strumenti.164

I captatori permettono anche un’attività che viene chiamata “perquisizione on-

line”, che non può essere ricondotta alla perquisizione propriamente detta (art. 247

c.p.p.),165 e pertanto viene considerata una prova atipica (art. 189 c.p.p.).166

L’art. 89 disp. att. c.p.p. prevede che i captatori devono essere “programmi conformi

ai requisiti tecnici stabiliti con decreto del Ministro della giustizia”.167 I requisiti tecnici

sono specificati all’art. 4 del decreto, che ha una formulazione piuttosto generica:168

1. I programmi informatici funzionali all’esecuzione delle

intercettazioni mediante captatore informatico su dispositivo

elettronico portatile sono elaborati in modo da assicurare integrità,

sicurezza e autenticità dei dati captati su tutti i canali di trasmissione

riferibili al captatore.

2. I sistemi di sicurezza adottati a norma del comma 1 consentono

che solo gli operatori autorizzati abbiano accesso agli strumenti di

comando e funzionamento del captatore.

umana; il domicilio (art. 14 Cost.), inteso anche nel senso di “domicilio informatico”; la riservatezza
delle comunicazioni (art. 15 Cost.), che per la formulazione ampia data dalla Costituzione include anche
le comunicazioni in formato digitale. V. Gaia Caneschi, «Le nuove indagini tecnologiche e la tutela dei
diritti fondamentali. L’esperienza del captatore informatico», Diritto Penale Contemporaneo, fasc. 2, 2019,
https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2019_caneschi.pdf, pp.
417–429, pp. 418–420.

164Il codice di procedura penale disciplina espressamente solo l’intercettazione di comunicazione
fra presenti (art. 266 co. 2 e 2-bis), ponendo alcune limitazioni ai luoghi in cui può essere compiuta, e
l’intercettazione di flussi di dati informatici fra più sistemi (art. 266-bis).

165Il motivo è che mancano le garanzie informative e difensive tipiche della perquisizione, e mentre
la perquisizione riguarda solo la ricerca del corpo del reato, la perquisizione on-line può riguardare
l’intero contenuto del dispositivo. V. G. Caneschi, op. cit., p. 421.

166Più in generale, qualsiasi altra attività che può essere svolta con un captatore, ma che non rientra
nelle prove tipiche, è una prova atipica. Le prove atipiche devono essere idonee ad accertare i fatti, non
devono pregiudicare la libertà morale della persona, ed il giudice deve sentire le parti sulla modalità di
assunzione della prova. V. G. Caneschi, ivi, pp. 421–422.

167Decreto del Ministero della Giustizia del 20 aprile 2018, “Disposizioni di attuazione per le
intercettazionii [sic] mediante inserimento di captatore informatico e per l’accesso all’archivio
informatico a norma dell’articolo 7, commi 1 e 3, del d.lgs. 216/2017”, v. https://web.archive.org/
web/20240402130505/https://www.giustizia.it/giustizia/it/mg_1_8_1.page?contentId=SDC289658.

168G. Caneschi, op. cit., p. 425.

65

https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2019_caneschi.pdf
https://web.archive.org/web/20240402130505/https://www.giustizia.it/giustizia/it/mg_1_8_1.page?contentId=SDC289658
https://web.archive.org/web/20240402130505/https://www.giustizia.it/giustizia/it/mg_1_8_1.page?contentId=SDC289658

3. I medesimi sistemi di sicurezza prevedono:

a) misure di offuscamento o evasione per impedire l’identificazione

del captatore e dei dati captati, sia da parte di operatori umani,

che per mezzo di specifico software;

b) misure idonee ad assicurare la permanenza e l’efficacia

del captatore sul dispositivo durante tutto il periodo di

attività autorizzata e con i limiti previsti dal provvedimento

autorizzativo, in modo da garantire il completo controllo da

remoto.

4. I programmi informatici funzionali all’esecuzione delle

intercettazioni mediante captatore consentono la trasmissione

di tutte le informazioni necessarie a definire il contesto

dell’acquisizione.

5. I programmi informatici sono periodicamente adeguati a standard

di funzionalità ed operatività in linea con l’evoluzione tecnologica.

L’impossibilità di usare il software libero per i captatori deriva esclusivamente dal

terzo comma.169 Dato che il captatore è un virus informatico, non può rivelare come

funziona.170 Il captatore si trova in una situazione paradossale, per cui può essere

necessario usarlo per la prova di determinati reati,171 ma allo stesso tempo, il suo uso

produce risultati intrinsecamente poco affidabili.172

169Le libertà previste dal software libero permetterebbero di controllare il rispetto dei requisiti
contenuti negli altri commi, e agevolerebbe l’ammissione della prova atipica (art. 189 c.p.p.), perché
è possibile dimostrare la sua idoneità ad accertare i fatti, e presentare il suo esatto meccanismo di
funzionamento al giudice.

170Altrimenti, gli sviluppatori del sistema operativo pubblicherebbero un aggiornamento per motivi
di sicurezza, ed il captatore diventerebbe inutilizzabile. Ad esempio, la Apple offre ricompense (da
qualche migliaio di dollari, fino a milioni di dollari, a seconda della gravità) a chiunque trovi delle
vulnerabilità nel loro sistema operativo. V. Apple.com, Apple Security Bounty Categories, 2023, https:
//web.archive.org/web/20231127163613/https://security.apple.com/bounty/categories/.

171Ad esempio, i reati elencati all’art. 266 co. 1 lett. f c.p.p. sono difficili da provare senza l’uso di
intercettazioni.

172Anche volendo, il captatore non potrebbe mai essere software libero.

66

https://web.archive.org/web/20231127163613/https://security.apple.com/bounty/categories/
https://web.archive.org/web/20231127163613/https://security.apple.com/bounty/categories/

Capitolo 3

Sviluppo di software scientifico

libero

3.1 Fattori di valutazione del software

3.1.1 Rilevanza per i giuristi

Il capitolo precedente ha dimostrato che da un punto di vista teorico, il modello

del software libero è il modello di sviluppo che soddisfa maggiormente le esigenze

dell’informatica forense.

Questo capitolo si concentra sugli aspetti pratici e tecnici dello sviluppo del

software. In primo luogo è importante indicare ai giuristi quali sono gli elementi

tecnici utili da menzionare nel contraddittorio per sostenere l’affidabilità del proprio

strumento di analisi, e screditare lo strumento dell’altra parte.1

1In particolare, è possibile screditare il software proprietario per il solo fatto che non può essere
sottoposto allo stesso livello di scrutinio del software libero. Questo non significa che il software libero
sia necessariamente libero da difetti, o migliore del software proprietario, ma piuttosto, che è più facile
rilevare questi difetti, e che è possibile sapere esattamente come e perché il software funziona.

67

3.1.2 Linguaggio di programmazione

Il primo fattore da valutare, e il più importante, è il linguaggio di programmazione

in cui il software è stato scritto. Ogni linguaggio di programmazione ha caratteristiche

diverse, che possono essere divise in due categorie: caratteristiche che aiutano la

creazione di software ad uso scientifico,2 e caratteristiche che rendono più difficile

creare programmi che funzionano correttamente.

È preferibile usare:

• Linguaggi memory-safe3 rispetto a linguaggi memory-unsafe;4

• Linguaggi statically-typed e strongly-typed,5 piuttosto che linguaggi dynamically-

typed ;6

• Linguaggi che usano gli out-of-band errors;7

2Idealmente, i linguaggi di programmazione dovrebbero tendere verso il “pozzo del successo”, ossia,
dovrebbero rendere facile seguire le best practices, ma soprattutto, dovrebbero rendere difficile non
seguirle. V. J. Atwood, Falling Into The Pit of Success, 2007, https://web.archive.org/web/20140402064217
/https://blog.codinghorror.com/falling-into-the-pit-of-success/.

3Nei linguaggi memory-safe, la gestione della memoria è completamente automatica. V. Manuele
Pasini, «Programmazione memory-safe senza garbage collection: il caso del linguaggio Rust», Alma
Mater Studiorum – Università di Bologna, 2019, p. 21.

4La gestione manuale della memoria nei linguaggi memory-unsafe è la causa della maggioranza
dei bug. V. A. Gaynor, Introduction to Memory Unsafety for VPs of Engineering, 2019, https://web.ar
chive.org/web/20190812151808/https://alexgaynor.net/2019/aug/12/introduction-to-memory-
unsafety-for-vps-of-engineering/ e P. Kehrer, Memory Unsafety in Apple’s Operating Systems, 2019,
https://web.archive.org/web/20190725163137/https://langui.sh/2019/07/23/apple-memory-safety/.

5Ossia, il programmatore deve indicare esplicitamente che tipo di valori che possono essere usati
all’interno del programma e come questi valori devono essere trasformati. V. T. Hurd, Introduction to
Static, Dynamic, Strong and Weak Data Types, 2021, https://web.archive.org/web/20210603180908/https:
//www.sitepoint.com/typing-versus-dynamic-typing/.

6I linguaggi dynamically-typed sono più facili da sviluppare, e richiedono meno codice, ma il prezzo
da pagare è che il controllo sul corretto uso dei tipi avviene solo quando il programma è in fase di
esecuzione. Nei linguaggi statically-typed, un programma che contiene errori nell’uso dei tipi non
potrà nemmeno essere avviato. V. la sez. “Typing” in John K. Ousterhout, «Scripting: Higher Level
Programming for the 21st Century», 1998, https://ieeexplore.ieee.org/document/660187, p. 24.

7Alcuni linguaggi tendono ad indicare gli errori in-band, e restituiscono un singolo risultato, che
può essere il risultato dell’operazione, oppure un valore particolare che indica la presenza di un errore.
È più difficile verificare la presenza di errori, e le informazioni diagnostiche sono più scarne. V. F. Long,
W. Snavely, ERR52-J. Avoid in-band error indicators, 2017, https://web.archive.org/web/202303290341
43/https://wiki.sei.cmu.edu/confluence/display/java/ERR52-J.+Avoid+in-band+error+indicators. È
possibile cercare di approssimare un errore out-of-band restituendo un singolo valore che contiene al
suo interno più elementi, ma è necessario che tutto il codice si adegui a questa nuova convenzione. Ad
es., v. Team di Sviluppo GTK, Error reporting, 2021, https://web.archive.org/web/20210921180746/https:
//docs.gtk.org/glib/error-reporting.html.

68

https://web.archive.org/web/20140402064217/https://blog.codinghorror.com/falling-into-the-pit-of-success/
https://web.archive.org/web/20140402064217/https://blog.codinghorror.com/falling-into-the-pit-of-success/
https://web.archive.org/web/20190812151808/https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://web.archive.org/web/20190812151808/https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://web.archive.org/web/20190812151808/https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://web.archive.org/web/20190725163137/https://langui.sh/2019/07/23/apple-memory-safety/
https://web.archive.org/web/20210603180908/https://www.sitepoint.com/typing-versus-dynamic-typing/
https://web.archive.org/web/20210603180908/https://www.sitepoint.com/typing-versus-dynamic-typing/
https://ieeexplore.ieee.org/document/660187
https://web.archive.org/web/20230329034143/https://wiki.sei.cmu.edu/confluence/display/java/ERR52-J.+Avoid+in-band+error+indicators
https://web.archive.org/web/20230329034143/https://wiki.sei.cmu.edu/confluence/display/java/ERR52-J.+Avoid+in-band+error+indicators
https://web.archive.org/web/20210921180746/https://docs.gtk.org/glib/error-reporting.html
https://web.archive.org/web/20210921180746/https://docs.gtk.org/glib/error-reporting.html

• Linguaggi che sono maturi8 e largamente utilizzati;9

• Linguaggi che sono semplici e opinionated rispetto a linguaggi complessi o

unopinionated.10

Nel caso in cui sia necessario usare dei linguaggi che presentano delle

caratteristiche sfavorevoli, è importante che gli sviluppatori cerchino di mitigare i

loro effetti e documentino il loro operato, in modo che i tecnici possano argomentare

che il software sia comunque affidabile.11

3.1.3 Documentazione del codice

La documentazione è importante per qualsiasi tipo di software, ma è una necessità

imprescindibile per il software ad uso scientifico. Il termine “documentazione” è un

8È preferibile evitare linguaggi nuovi, sperimentali, o che cambiano di frequente, e concentrarsi
su linguaggi che esistono da tempo, maturi e stabili. Ad esempio, C/C++, Java e Python sono stati
creati decenni fa, sono largamente usati dall’industria. È presumibile che continueranno ad essere
supportati ed utilizzati nel tempo, senza cambiamenti significativi. Il linguaggio Go è più recente, ma
gli sviluppatori hanno promesso che si impegneranno a garantire la retro-compatibilità delle versioni
successive del linguaggio con le versioni precedenti. V. R. Cox, Backward Compatibility, Go 1.21, and Go
2, 2023, https://web.archive.org/web/20230814162240/https://go.dev/blog/compat.

9Più un linguaggio è largamente utilizzato, e più è facile trovare risorse tecniche, codice da riutilizzare,
programmatori che possono aiutare a migliorare il codice, ecc. Ad esempio, i linguaggi C e C++ sono
rischiosi da utilizzare nel software scientifico perché memory-unsafe, ma allo stesso tempo, hanno
larghissima utilizzazione nel mondo della programmazione, e quindi esiste un grande numero di risorse
e strumenti che aiutano a sviluppare applicazioni robuste ed affidabili.

10Se un linguaggio è flessibile, e offre più modi per risolvere lo stesso problema, programmatori
diversi useranno modi diversi, andando a violare il principle of least surprise (principio della sorpresa
minima), e complicando la comprensione e manutenzione del codice. Ad esempio, basta confrontare il
motto del linguaggio Python, There should be one – and preferably only one – obvious way to do it, con
il motto del linguaggio Perl, There’s more than one way to do it. Per una discussione dei rischi che un
linguaggio particolarmente flessibile pone, v. R. Winestock, The Lisp Curse, 2011, https://web.archive.or
g/web/20110416211304/http://winestockwebdesign.com/Essays/Lisp_Curse.html.

11Ad esempio, i programmi che interagiscono direttamente con i componenti più basilari del sistema
operativo (filesystem, memoria RAM, interfacce di rete, ecc.) devono essere scritti in linguaggi di
basso livello, come C, che però tendono ad essere memory-unsafe. Pertanto, è utile usare Valgrind (v.
https://web.archive.org/web/20231113151236/http://valgrind.org/docs/manual/mc-manual.html) per
rilevare i bug relativi alla memoria. Viceversa, i programmi per analizzare i dati tendono ad essere
scritti in linguaggi di alto livello, che però tendono ad essere dynamically-typed. Pertanto, è utile usare
strumenti come MyPy (v. https://mypy-lang.org/) per controllare il corretto uso dei tipi. Più in generale,
è utile seguire le linee-guida previste per il codice che sarà utilizzato in applicazioni critiche, come i
sistemi aerospaziali, v. Gerard J. Holzmann, «The Power of 10: Rules for Developing Safety-Critical
Code», 2006, https://ieeexplore.ieee.org/document/1642624.

69

https://web.archive.org/web/20230814162240/https://go.dev/blog/compat
https://web.archive.org/web/20110416211304/http://winestockwebdesign.com/Essays/Lisp_Curse.html
https://web.archive.org/web/20110416211304/http://winestockwebdesign.com/Essays/Lisp_Curse.html
https://web.archive.org/web/20231113151236/http://valgrind.org/docs/manual/mc-manual.html
https://mypy-lang.org/
https://ieeexplore.ieee.org/document/1642624

termine generico: esistono più forme di documentazione, che si differenziano per il

loro livello di astrazione12 e per la loro finalità.13

Così come il codice, anche la documentazione può contenere bug14 ed è soggetta

ad una licenza, che può essere a sua volta libera.15

Si possono distinguere due tipi di documentazione. La prima è la documentazione

che interessa principalmente agli sviluppatori:

• I commenti formano parte integrante del codice. Il loro scopo è di chiarire

quanto non è immediatamente evidente da una semplice lettura del codice.16

Nel codice ad uso scientifico, la presenza di commenti è un aiuto fondamentale

per comprendere a pieno l’organizzazione ed il funzionamento del software;

• Il reference manual (manuale di riferimento) spiega nel dettaglio ogni

componente del programma, e permette di studiare il funzionamento del

programma senza dover leggere ogni riga del codice sorgente. Esempi di

reference manuals sono il manuale per la libreria C GNU,17 e la documentazione

12Ossia, quanto sono vicine alle singole istruzioni di cui il codice è composto.
13In linea generale, la documentazione può servire a spiegare il “perché” il programma è stato

progettato in un certo modo, o il “come” funziona e trasforma i dati.
14Si parla di bug della documentazione se non è chiara o completa (perché rende difficile capire se

il programma risponde alle proprie esigenze, o se si sta usando il programma correttamente) o se è
difforme rispetto al comportamento del programma (perché è difficile determinare se il programma
produce risultati incorretti, oppure la documentazione è incorretta). V. sez. “Reporting Bugs” in Free
Software Foundation, «The GNU C Library Reference Manual, for version 2.38», 2023, https://web.arch
ive.org/web/20231227043035/https://sourceware.org/glibc/manual/pdf/libc.pdf, p. 1121.

15I criteri per determinare se la documentazione è libera sono la possibilità di ridistribuire copie della
documentazione insieme alle copie del codice, e la possibilità di modificare la documentazione, in modo
che rifletta le eventuali modifiche apportate al codice. V. Free Software Foundation, ivi, p. 1149

16In altre parole, devono realmente essere un “commento” al codice, e non una semplice “traduzione”
del linguaggio di programmazione in un linguaggio naturale. Per una lista di buone pratiche relative ai
commenti, v. E. Spertus, Best practices for writing code comments, 2021, https://web.archive.org/web/
20211223145454/https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/.
In linea generale, tra scrivere codice complesso e spiegarlo con commenti, e scrivere codice semplice
che non ha bisogno di commenti, è sempre preferibile la seconda opzione; v. D. Orr, Write code for
humans. Design data for machines., 2020, https://web.archive.org/web/20200402061509/https:
//douglasorr.github.io/2020-03-data-for-machines/article.html. Nel caso in cui sia assolutamente
necessario scrivere codice complesso, e cercare di semplificarlo è inutile o impossibile, anche questo va
indicato nei commenti; ad es., v. N. Muller, XeePhotoshopLoader.m, 2013, https://github.com/zepouet/Xee-
xCode-4.5/blob/83394493f51991748b9b4706e6d37a8ed874bc05/XeePhotoshopLoader.m, linee 108 ss.

17Che indica in dettaglio gli standard che vengono implementati, e le eventuali differenze rispetto

70

https://web.archive.org/web/20231227043035/https://sourceware.org/glibc/manual/pdf/libc.pdf
https://web.archive.org/web/20231227043035/https://sourceware.org/glibc/manual/pdf/libc.pdf
https://web.archive.org/web/20211223145454/https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://web.archive.org/web/20211223145454/https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://web.archive.org/web/20200402061509/https://douglasorr.github.io/2020-03-data-for-machines/article.html
https://web.archive.org/web/20200402061509/https://douglasorr.github.io/2020-03-data-for-machines/article.html
https://github.com/zepouet/Xee-xCode-4.5/blob/83394493f51991748b9b4706e6d37a8ed874bc05/XeePhotoshopLoader.m
https://github.com/zepouet/Xee-xCode-4.5/blob/83394493f51991748b9b4706e6d37a8ed874bc05/XeePhotoshopLoader.m

di SQLite.18 È fondamentale che il reference manual sia aggiornato rispetto al

codice a cui fa riferimento.

La seconda è la documentazione che interessa agli utilizzatori finali:

• Le istruzioni su come installare e configurare il software;19

• Lo user’s manual (manuale per l’utente) dà istruzioni pratiche su come usare il

programma;20

• I known bugs, un elenco di errori di programmazione conosciuti ma non ancora

risolti dagli sviluppatori;21

• Il changelog (lista dei cambiamenti) o il file NEWS sono file che contengono una

descrizione dei cambiamenti fra le varie versioni del programma. Per il software

scientifico, è importante indicare tutti i cambiamenti che possono influire in

maniera significativa sui risultati;22

• Tutorial e guide, che spiegano in maniera dettagliata come raggiungere un

determinato risultato.

Riassumendo, la finalità di questi documenti nel software ad uso scientifico è di

garantire che l’utilizzatore finale sia in grado di installare ed utilizzare il programma

correttamente, e sia reso consapevole di eventuali bug e limitazioni già note agli

sviluppatori.

agli standard, v. Free Software Foundation, «The GNU C Library Reference Manual, for version 2.38»,
cit.

18Che contiene sia un reference manual con diagrammi che spiegano la sintassi del linguaggio SQL,
sia numerosi documenti che spiegano come varie funzionalità sono implementate in concreto, e quali
considerazioni tecniche hanno portato a quelle scelte; v. https://www.sqlite.org/docs.html.

19Questi elementi sono estremamente importanti per garantire il funzionamento corretto e
riproducibile del software scientifico.

20Laddove il reference manual è l’equivalente di un progetto per costruire un prodotto per i produttori,
lo user’s manual è il manuale di istruzioni per i consumatori. È importante che indichi le limitazioni
tecniche del programma.

21Perché sono bug particolarmente complessi da risolvere, o perché hanno un impatto ridotto.
Idealmente, il software non dovrebbe contenere bug, ma nella pratica è inevitabile che alcuni bug non
possano essere risolti immediatamente. Il miglior compromesso è essere messi a conoscenza della
presenza di questi bug, in modo da tenerli in conto durante la valutazione.

22Ad esempio, la risoluzione di un bug, o il cambiamento o eliminazione di un metodo di analisi.

71

https://www.sqlite.org/docs.html

3.1.4 Uso di codice di terze parti

Per “codice di terze parti”, si intende il codice scritto da sviluppatori diversi dagli

sviluppatori originali o principali.

Nel caso del software scientifico, si potrebbe argomentare che è preferibile evitare

il codice di terze parti per due ragioni: non è stato scritto considerando i requisiti

particolari dell’informatica forense23 e non si è familiari con il codice scritto da altri.24

È possibile confutare entrambe queste nozioni.

I requisiti di funzionamento del software specializzato per l’analisi forense25 sono

condivisi anche dal software “generico”. Tutto il software ha interesse a produrre

risultati affidabili, l’unica differenza è il bilanciamento fra l’affidabilità e le altre esigenze

(efficienza, sviluppo di altre funzionalità, ecc.).26

Il codice scritto da altri ha il vantaggio di essere stato sottoposto ad un controllo di

qualità diffuso, da parte degli utenti27 e sviluppatori28 Specularmente, questi vantaggi

diventano svantaggi nel codice nuovo e scritto ad hoc. Il fatto che il codice è nuovo

significa che è stato messo alla prova solo in un numero limitato di casi, e quindi è

intrinsecamente meno affidabile.

Si possono trarre due conclusioni. La prima è l’opportunità di riutilizzare il codice

23Ad esempio, nel codice generico è meglio dare una riposta approssimativa in tempi rapidi, ma per
l’informatica forense è meglio dare una risposta precisa anche se richiede tempi più lunghi.

24Quindi è più difficile stimare se sia affidabile, e modificarlo per allinearlo alle proprie esigenze.
Viceversa, con il proprio codice si ha cognizione diretta dei bug, dei punti deboli e delle limitazioni, e
della sua struttura, quindi può essere modificato in tempi minori.

25Lo strumento di analisi deve essere robusto (gli input invalidi devono essere rigettati, e gli errori
che si verificano devono essere gestiti in maniera adeguata), deve essere preciso (gli output sono
corretti). L’analisi deve essere ripetibile (non modificare gli input originali), riproducibile (gli stessi input
producono sempre lo stesso output), e dettagliata (deve contenere quante più informazioni diagnostiche
utili possibile).

26È la tensione fra doing the right thing (fare la cosa giusta) e worse-is-better (il meglio è il nemico del
bene), v. sez. “The Rise of Worse is Better” in Richard P. Gabriel, «Lisp: Good News, Bad News, How to
Win Big», 2000, https://web.archive.org/web/20070706112430/https://www.dreamsongs.com/Files/Lis
pGoodNewsBadNews.pdf, pp. 7–10.

27Quanti più utenti usano il software, ognuno con le proprie configurazioni di hardware e software,
tanto più ci si può aspettare che i risultati siano riproducibili, e più bug possono essere scoperti e
corretti.

28Quanti più sviluppatori di terze parti contribuiscono a sviluppare il software, tanto più ci sarà un
incentivo a riorganizzare e documentare il codice in maniera che sia di immediata comprensione anche
a soggetti che leggono quel codice per la prima volta.

72

https://web.archive.org/web/20070706112430/https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf
https://web.archive.org/web/20070706112430/https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf

libero già esistente, dove possibile e ragionevole.29 La seconda è che in teoria, qualsiasi

software libero non-specializzato può essere modificato in modo che risponda alle

esigenze dell’informatica forense.30

Quando si usa codice di terze parti all’interno del software scientifico, è utile usare

una tecnica chiamata vendoring, ossia, includere una copia integrale del codice di terze

parti all’interno del proprio software.31 Questo permette di evitare vari problemi, come

il dependency hell,32 i supply-chain attacks,33 e garantisce la massima riproducibilità

del software, perché tutti i componenti necessari sono già inclusi nel progetto.

3.1.5 Controlli di qualità

Esistono vari strumenti che permettono di controllare la qualità del codice, e

verificare e garantire che funzioni in maniera corretta e riproducibile anche su sistemi

diversi.

I linter sono software che controllano se il codice rispetta una serie di regole:34

possono essere stilistiche,35 logiche,36 o riguardare il corretto uso dei tipi nei linguaggi

29Ad esempio, perché non esistono ancora soluzioni mature e largamente affermate. Se invece queste
soluzioni esistono, è necessario spiegare perché sono inadeguate, ed è preferibile iniziare da zero. In
generale, è sempre preferibile evitare di partire da zero. V. J. Spolsky, Things You Should Never Do, Part I,
2000, https://web.archive.org/web/20170104073437/https://www.joelonsoftware.com/2000/04/06/things-
you-should-never-do-part-i/.

30Viceversa, nel caso del software forense proprietario, potrebbe essere impossibile esaminare il
codice sorgente per verificare il corretto funzionamento del programma.

31V. T. MacWright, 2021, Vendor by default, https://web.archive.org/web/20230929010221/https:
//macwright.com/2021/03/11/vendor-by-default.

32Per una definizione del termine e vari esempi, v. O. Barcz, What is Dependency Hell and How to
Avoid it?, 2021, https://web.archive.org/web/20230208172253/https://www.boldare.com/blog/software-
dependency-hell-what-is-it-and-how-to-avoid-it/.

33Situazioni in cui un attacco informatico va a compromettere la fonte da cui viene scaricato il
software. Ad es., v. D. Goodin, Backdoor added to PHP source code after breach of internal git server, 2021,
https://web.archive.org/web/20210329192422/https://arstechnica.com/gadgets/2021/03/hackers-
backdoor-php-source-code-after-breaching-internal-git-server/.

34V. Fondazione OWASP, Linting Code, 2022, https://web.archive.org/web/20230328005626/https:
//owasp.org/www-project-devsecops-guideline/latest/01b-Linting-Code.

35Se servono a garantire che il codice sia coerente dal punto di vista estetico. Ad esempio, esistono
numerose opzioni ed opinioni su dove posizionare le parentesi graffe, se usare tabulazioni o spazi (e
quanti spazi) per l’indentazione, dove inserire i ritorni a capo, la lunghezza massima delle righe di
codice, ecc. Queste regole possono essere sempre applicate automaticamente.

36Se garantiscono il rispetto delle best practices relative a quel linguaggio di programmazione. Ad

73

https://web.archive.org/web/20170104073437/https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://web.archive.org/web/20170104073437/https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://web.archive.org/web/20230929010221/https://macwright.com/2021/03/11/vendor-by-default
https://web.archive.org/web/20230929010221/https://macwright.com/2021/03/11/vendor-by-default
https://web.archive.org/web/20230208172253/https://www.boldare.com/blog/software-dependency-hell-what-is-it-and-how-to-avoid-it/
https://web.archive.org/web/20230208172253/https://www.boldare.com/blog/software-dependency-hell-what-is-it-and-how-to-avoid-it/
https://web.archive.org/web/20210329192422/https://arstechnica.com/gadgets/2021/03/hackers-backdoor-php-source-code-after-breaching-internal-git-server/
https://web.archive.org/web/20210329192422/https://arstechnica.com/gadgets/2021/03/hackers-backdoor-php-source-code-after-breaching-internal-git-server/
https://web.archive.org/web/20230328005626/https://owasp.org/www-project-devsecops-guideline/latest/01b-Linting-Code
https://web.archive.org/web/20230328005626/https://owasp.org/www-project-devsecops-guideline/latest/01b-Linting-Code

dynamically-typed.37

I tests38 servono a controllare il corretto funzionamento del programma.39 Un test

consiste in un’azione da compiere, ed il risultato previsto. Se il risultato prodotto

dall’azione corrisponde al risultato previsto, il test è superato (pass), altrimenti fallisce

(fail).

Per il software ad uso scientifico, è estremamente importante controllare la presenza

ed il contenuto dei tests40 ed eseguirli41 prima di usare il programma, per verificare il

suo corretto funzionamento. Nella documentazione relativa all’uso del programma è

importante indicare come eseguire i tests e dare informazioni sommarie riguardo al

loro contenuto.42

Ancora, è utile adottare la metodologia TDD (test-driven development, sviluppo

guidato dai test), dove i tests vengono scritti prima ancora di scrivere il codice.

Questo approccio presenta vari vantaggi: permette di scrivere una minore quantità di

codice,43 l’insieme dei tests diventa una specificazione formale del funzionamento del

esempio, shellcheck contiene centinaia di regole su come scrivere degli shell script robusti, v. https:
//www.shellcheck.net/wiki/. In alcuni casi le correzioni possono essere applicate automaticamente,
perché esiste una sola soluzione. Altrimenti, è necessario l’intervento del programmatore.

37Ad esempio, v. MyPy, https://mypy-lang.org/.
38Esistono varie tipologie di test: gli unit tests controllano il funzionamento delle singole “unità”

logiche di cui il programma è composto; gli integration tests controllano che più unità funzionano
correttamente insieme; infine, gli end-to-end tests controllano che l’intero programma, dall’avvio fino
al termine dell’esecuzione, funziona correttamente. In questa sezione, si userà l’espressione test(s) si
riferisce a tutte e tre le categorie.

39Facendo un’analogia con il diritto, mentre i linter svolgono un controllo sugli atti (sul codice), di
legittimità (puramente formale), e preventivo (prima dell’esecuzione del programma), i tests svolgono
un controllo sull’attività (i risultati che vengono raggiunti), che per sua natura è sempre successivo. V.
Marcello Clarich, Manuale di diritto amministrativo, Società editrice il Mulino, 2022, p. 276–277.

40La qualità dei test è molto più importante della loro quantità. Idealmente, i test devono verificare
non solo che gli input validi siano elaborati correttamente, ma anche, e soprattutto, che gli input invalidi
vengono correttamente identificati come tali, e rigettati dal programma.

41I test non devono essere eseguiti manualmente, uno ad uno. Esistono programmi chiamati test
runner che individuano i test, li eseguono, e offrono un resoconto dettagliato dei test non superati, in
maniera automatica.

42Ad esempio, indicare che tipi di test sono inclusi (unit, integration, e end-to-end), come sono
strutturati, quante casistiche coprono, se ci sono test che potrebbero fallire su/al di fuori di casi
particolari, ma questa situazione non incide sul corretto funzionamento del programma in generale, ecc.

43I programmatori sono tenuti a scrivere solo il codice assolutamente necessario per superare i
tests, invece di creare soluzioni più complesse del necessario. Meno codice è presente all’interno del
programma, meno bug contiene, e più è facile studiare il suo funzionamento.

74

https://www.shellcheck.net/wiki/
https://www.shellcheck.net/wiki/
https://mypy-lang.org/

programma e dei suoi limiti operativi44 e i tests diventano una forma aggiuntiva di

documentazione del codice per gli sviluppatori.45

Infine, i test possono essere usati rilevare le regressions (regressioni).46

I fuzzers47 sono strumenti che verificano l’affidabilità e robustezza del codice

fornendo input casuali al programma e osservando quali input causano un loop infinito

o un crash.48

Idealmente, il programma deve sempre terminare l’esecuzione in maniera

“aggraziata”.49 Nel caso di un crash, il programma termina in maniera “brusca”, spesso

senza dare all’utilizzatore finale indicazioni utili su quale sia il problema.50

L’uso dei fuzzers permette di rendere il codice più robusto, e capace di gestire il

44In altre parole, se tutti i tests sono superati, e se i dati forniti al programma al momento
dell’utilizzazione pratica rientrano nel tipo di dati che sono gestiti correttamente nei tests, la conclusione
logica è che il risultato prodotto dal programma sarà corretto. Naturalmente, questa conclusione dipende
interamente dalla qualità e quantità dei tests.

45I tests sono una serie di esempi pratici di come usare le funzioni offerte dal codice.
46Una regressione è la situazione che si verifica quando un bug corretto in precedenza si ripresenta di

nuovo, a seguito di cambiamenti nel codice. Per rilevarle in maniera automatica, è possibile aggiungere
un test che controlla la presenza o meno di quel bug.

47In inglese, fuzzy significa “sfocato” o “confuso”, quindi il termine potrebbe essere tradotto in
maniera approssimativa come “confonditori”.

48Se un programma entra in un loop infinito non termina mai l’esecuzione. Un crash è la situazione
in cui l’esecuzione del programma termina in maniera inaspettata, e non prevista dal programmatore,
perché una situazione di errore non è stato gestita correttamente. V. Barton P. Miller, Mengxiao
Zhang, Elisa R. Heymann, «The Relevance of Classic Fuzz Testing: Have We Solved This One?», IEEE
Transactions on Software Engineering, vol. 48, fasc. 6, 2022, https://ieeexplore.ieee.org/abstract/documen
t/9309406, pp. 2028–2039, pp. 2030–2031.

49Spesso in inglese si usano l’aggettivo graceful e l’avverbio gracefully per indicare che davanti ad
un problema, il sistema non si interrompe in maniera “brusca”, ma cerca di continuare l’esecuzione,
magari offrendo un risultato solo parziale, se l’errore è recoverable (può essere corretto), o interromperla
offrendo informazioni diagnostiche utili anche ad utenti non-tecnici, se l’errore è unrecoverable (è
impossible continuare l’esecuzione). In ogni caso, è importante informare l’utente della presenza di
qualsiasi problema che non è abbastanza grave da arrestare l’esecuzione, ma che potrebbe influire sulla
qualità e quantità dei dati (questo tipo di problemi vengono indicati come warnings, avvertimenti).

50I messaggi prodotti a seguito di un crash sono indispensabili per i programmatori (affinché possano
identificare la loro causa) ma non sono particolarmente utili per gli utilizzatori del software. Il motivo
per cui è importante evitare che il programma termini con l’esecuzione con un crash e sia sempre in
grado di dare una risposta è lo stesso motivo per cui esiste il divieto di non liquet per i giudici. Un
programma che subisce un crash (e quindi né analizza i dati, né indica l’errore che ha impedito l’analisi)
è come il giudice che conclude il processo affermando che non ci siano leggi applicabili (e non dà
ragione a nessuna delle due parti). Più in generale, la presenza di crash può far dubitare della qualità
del programma, da un punto di vista anche solo puramente psicologico, prima ancora che tecnico.

75

https://ieeexplore.ieee.org/abstract/document/9309406
https://ieeexplore.ieee.org/abstract/document/9309406

numero maggiore di input possibili in maniera “aggraziata”.51

3.1.6 Riproducibilità e distribuzione del codice

È estremamente importante garantire che il software ad uso scientifico che è stato

creato dagli sviluppatori, e che funziona correttamente sulle loro macchine, funzioni

nella stessa maniera anche sulle macchine degli utilizzatori finali.52

Le tecniche di reproducible builds53 interessano principalmente nell’ambito della

sicurezza informatica, perché permettono di rilevare l’inclusione di codice dannoso al

momento della compilazione del codice sorgente.54

Gli utenti finali non scaricano codice già compilato da terzi,55 ma scaricano il codice

sorgente, lo compilano di persona e verificano che il loro risultato è lo stesso risultato

che è stato ottenuto dagli sviluppatori originali.56 Questo previene l’inclusione di

codice dannoso, e più in generale garantisce che il programma si comporterà nello

stesso e identico modo sia per gli sviluppatori originali, sia per gli utilizzatori.57

I container sono un altro strumento utile per garantire la riproducibilità. Un

container è un ambiente isolato che viene creato all’interno di un sistema operativo già

51Inoltre, eseguendo un’analisi statistica dei risultati, diventa possible evidenziare gli errori di
programmazione più comuni che diminuiscono l’affidabilità del software, e quindi creare strumenti
specializzati per rilevarli. V. B.P. Miller, M. Zhang, E.R. Heymann, op. cit., p. 2033–2036.

52Altrimenti, tutti gli sforzi per garantire la qualità del codice fatti fino a questo punto sarebbero
inutili, e tutti i vantaggi del software libero diventerebbero lettera morta. Certamente, il codice potrebbe
essere studiato, modificato e ridistribuito, ma verrebbe meno la funzione principale, il poter essere
eseguito (con risultati riproducibili).

53Nel gergo dell’informatica, build è il codice macchina che viene prodotto a seguito della
compilazione.

54In questo tipo di attacco, il codice sorgente è sicuro, ma nel momento in cui viene compilato
dall’utente finale per poter essere eseguito, il compilatore aggiunge del codice dannoso. Per l’utente finale,
è difficile rilevare la presenza del codice dannoso. Per maggiori dettagli, v. Ken Thompson, «Reflections
on trusting trust», Commun. ACM, vol. 27, fasc. 8, agosto 1984, https://doi.org/10.1145/358198.358210,
pp. 761–763.

55I terzi potrebbero modificare il codice sorgente subito prima della compilazione per aggiungere
codice dannoso.

56Simon Butler et al., «On business adoption and use of reproducible builds for open and closed source
software», Software Quality Journal, vol. 31, fasc. 3, settembre 2023, https://doi.org/10.1007/s11219-022-
09607-z: 687–688.

57Questo è il punto che interessa all’informatica forense, la riproducibilità del software di analisi.

76

https://doi.org/10.1145/358198.358210
https://doi.org/10.1007/s11219-022-09607-z
https://doi.org/10.1007/s11219-022-09607-z

in esecuzione, e permette di installare ed eseguire applicazioni.58 I container offrono

due vantaggi: sono deterministici59 e includono soltanto le applicazioni.60

Le caratteristiche dei container interessano principalmente alla sicurezza

informatica,61 ma risultano comunque utili per l’informatica forense.62

3.2 Buone pratiche di sviluppo

3.2.1 Rilevanza per i giuristi

Questa seconda sezione si concentra sulle buone pratiche relative al processo di

sviluppo del software, ed indica gli argomenti che possono essere usati per dimostrare

che il modello di sviluppo del software libero non è disorganizzato o produce software

di qualità inferiore, per il solo fatto che il diritto di modificare e ridistribuire il codice

sorgente è garantito a tutti63 o perché viene solitamente distribuito gratuitamente.64

58Hanno una funzione analoga alle virtual machines (macchine virtuali). La differenza è che le
macchine virtuali simulano l’esecuzione di un intero computer e sistema operativo, mentre i container
servono soltanto a separare le applicazioni all’interno del container dalle applicazioni già presenti sul
sistema. V. I. Buchanan, Containers vs. virtual machines, 2024, https://web.archive.org/web/2024011201
2831/https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms.

59Ossia, agli stessi input corrispondono gli stessi output. Questo permette di verificare l’integrità
del container, e di garantire Ad esempio, i container di Docker vengono definiti con un file di testo
chiamato “Dockerfile” (v. https://docs.docker.com/develop/develop-images/dockerfile_best-practices/),
e sono identificati in maniera univoca da un hash (v. sez. “Image digests” in https://docs.docker.com/en
gine/reference/run/).

60I dati sono conservati all’esterno del container, in maniera separata ed indipendente. Il container che
comprende il software di analisi può essere distrutto e ricreato facilmente, in modo da partire sempre
dallo stesso ambiente iniziale. Ad esempio, di default Docker conserva i dati generati dall’applicazione
solo in maniera temporanea, e quando il container viene fermato, i dati vengono persi. V. Docker.org,
Manage data in Docker, 2024, https://web.archive.org/web/20240106140934/https://docs.docker.com/st
orage/.

61Il fatto che i container sono isolati dal resto del sistema serve a limitare i danni derivanti da attacchi
informatici, e il fatto che possono essere installati e configurati in maniera automatica elimina eventuali
errori umani che potrebbero compromettere la sicurezza del sistema.

62La netta separazione fra programmi e dati, e l’installazione e configurazione automatica dei
programmi sono utili per garantire la ripetibilità e riproducibilità delle analisi.

63Pertanto, si corre il rischio che entrino in circolazione delle versioni modificate in peggio del
software originale.

64Una massima di esperienza è ex nihilo nihil fit (nulla viene dal nulla), e pertanto, se qualcosa non
costa nulla, non vale nemmeno nulla.

77

https://web.archive.org/web/20240112012831/https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms
https://web.archive.org/web/20240112012831/https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://web.archive.org/web/20240106140934/https://docs.docker.com/storage/
https://web.archive.org/web/20240106140934/https://docs.docker.com/storage/

3.2.2 Progettazione del software

Nel tempo sono state elaborate varie linee-guida per la progettazione del software.

Il principio generale che può essere desunto da tutte le altre linee-guida65 è di scrivere

meno software possibile, e di scrivere il software nella maniera più semplice possibile.

È meglio risolvere un problema complesso usando più programmi (relativamente)

semplici e generici,66 che usando un singolo programma complesso e specifico.67

Se è assolutamente necessario creare un nuovo programma68 è utile dividerlo in due

parti: il front-end gestisce la presentazione dei dati,69 mentre il back-end gestisce la loro

trasformazione.70 Questo permette di estrarre il back-end come un componente a sé,

chiamato library (libreria), in modo che possa essere riutilizzato da altri programmi. Un

framework raccoglie più librerie, combina le loro funzionalità, e offre ai programmatori

un’interfaccia unificata per utilizzarle.71

65Le regole che vengono menzionate in seguito sono riprese da Eric Steven Raymond, The Art of
Unix Programming, Addison-Wesley, 2003, http://www.catb.org/esr/writings/taoup/html/, sez. “Basics
of the Unix Philosophy”.

66Dato che i vari programmi devono comunicare fra di loro, è preferibile che lo facciano usando
formati liberi e standardizzati. In ogni caso, è utile anche supportare i formati proprietari, ma i formati
liberi dovrebbero essere la scelta principale.

67Questa è la logica del glue code, il codice che “incolla” insieme più programmi, in modo da creare
una sorta di “filiera” per i dati. Per automatizzare operazioni meccaniche, che devono essere ripetute
più volte, invece di scrivere manualmente tutti i comandi ogni volta, è molto più semplice scrivere del
codice che eseguirà i comandi necessari in sequenza.

68Perché il problema non può essere risolto combinando insieme più programmi, oppure perché il
problema è nuovo, e non esiste ancora un programma in grado di affrontarlo.

69Front-end significa “parte anteriore”, l’interfaccia grafica o testuale con cui l’utente finale interagisce
direttamente.

70Back-end significa “parte posteriore”, ed è il “motore” del programma, dove i dati vengono modificati
prima di essere mostrati all’utente. Questa impostazione rende più facile modificare, estendere, e
verificare il corretto funzionamento del singolo programma, dato che le varie parti sono loosely-coupled
(accoppiate in maniera non rigida).

71Facendo un’analogia con il diritto, mentre le librerie possono essere considerate analoghe alle leggi,
perché sono generiche ed astratte, e generalmente serve la mediazione di altri atti per metterle in pratica,
i framework possono essere considerati analoghi ai testi unici, perché raccolgono e armonizzano più
leggi speciali.

78

http://www.catb.org/esr/writings/taoup/html/

3.2.3 Scelta di una licenza libera

È fondamentale distribuire il software ad uso scientifico con una licenza libera. La

Free Software Foundation offre alcune indicazioni per scegliere una licenza.72

La Licenza Apache 2.073 è non-copyleft, e può essere utilizzata per programmi

particolarmente semplici74

La GNU GPL75 viene consigliata come la scelta da preferire in generale; La GPL

è indicata anche per le librerie software che risolvono problemi nuovi, per cui non

esistono altre librerie;76 Altrimenti, se esistono già altre librerie che svolgono funzioni

simili, è preferibile usare la licenza LGPL,77 che invece non è copyleft.78

3.2.4 Sistemi di controllo di versione

I VCS (version control system, sistemi di controllo di versione) sono lo strumento

che più di ogni altro permette lo sviluppo ordinato del software, anche in presenza

di più collaboratori.79. La funzione di un VCS è di tenere traccia dei cambiamenti che

72Free Software Foundation, «How to Choose a License for Your Own Work», 2022, https://web.arch
ive.org/web/20220127041134/https://www.gnu.org/licenses/license-recommendations.html.

73V. https://web.archive.org/web/20040202124049/http://www.apache.org:80/licenses/LICENSE-2.0.
74Ad esempio, il glue code che viene utilizzato per l’estrazione o la presentazione di dati. In questo

caso, le eventuali modifiche fatte dalla controparte dovrebbero essere comunque comunicate all’interno
del contraddittorio.

75Dato che esistono più versioni della GPL, è importante aggiungere “e versioni successive”, in
modo che il software sia sempre compatibile anche con le eventuali versioni successive della GPL, v.
Richard Stallman, «For Clarity’s Sake, Please Don’t Say ”Licensed under GNU GPL 2”!», 2022, https:
//web.archive.org/web/20220219074031/https://www.gnu.org/licenses/identify-licenses-clearly.html.

76Questo impone ai programmatori una scelta: scrivere il codice da zero, oppure usare la libreria con
licenza GPL, e adottare la licenza GPL anche per il loro programma.

77V. https://web.archive.org/web/20070701212426/http://www.gnu.org/licenses/lgpl-3.0.html.
78L’idea è di incentivare comunque l’uso del software libero (le altre librerie potrebbero essere

non-libere), senza costringere i programmatori ad usare la licenza GPL per il loro programma.
79In questa sezione si farà riferimento alla terminologia ed ai concetti usati da Git, un VCS

sviluppato originariamente per gestire lo sviluppo del kernel Linux, ma attualmente usato dalla
stragrande maggioranza degli sviluppatori, e recentemente, persino dalla Microsoft. Oltre a Git, esistono
anche altri sistemi. V. R. Donovan, Beyond Git: The other version control systems developers use, 2023,
https://web.archive.org/web/20230109140009/https://stackoverflow.blog/2023/01/09/beyond-git-the-
other-version-control-systems-developers-use/. Per un’introduzione pratica all’uso di Git, si rimanda a
Scott Chacon, Ben Straub, «Pro Git. Version 2.1.413», 2023, https://web.archive.org/web/202312231528
42/https://github.com/progit/progit2/releases/download/2.1.413/progit.pdf.

79

https://web.archive.org/web/20220127041134/https://www.gnu.org/licenses/license-recommendations.html
https://web.archive.org/web/20220127041134/https://www.gnu.org/licenses/license-recommendations.html
https://web.archive.org/web/20040202124049/http://www.apache.org:80/licenses/LICENSE-2.0
https://web.archive.org/web/20220219074031/https://www.gnu.org/licenses/identify-licenses-clearly.html
https://web.archive.org/web/20220219074031/https://www.gnu.org/licenses/identify-licenses-clearly.html
https://web.archive.org/web/20070701212426/http://www.gnu.org/licenses/lgpl-3.0.html
https://web.archive.org/web/20230109140009/https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
https://web.archive.org/web/20230109140009/https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
https://web.archive.org/web/20231223152842/https://github.com/progit/progit2/releases/download/2.1.413/progit.pdf
https://web.archive.org/web/20231223152842/https://github.com/progit/progit2/releases/download/2.1.413/progit.pdf

sono stati apportati ad uno o più file. Un gruppo di cambiamenti si chiama commit,80

ed i commits sono conservati all’interno di un repository (deposito). I VCS permettono

di:

• Ottenere una copia del repository;81

• Creare nuovi commits;82

• Sincronizzare i propri commits con quelli di altri;83

• Lavorare in parallelo su più funzionalità;84

• Verificare l’integrità del repository;85

• Estrarre versioni specifiche del codice dal repository;86

• Esaminare come un file è variato nel tempo;87

80Il sostantivo commit fa parte del gergo specializzato dell’informatica. In inglese, uno dei possibili
significati del verbo to commit è “affidare”. Pertanto, commit può essere tradotto come “affidamento”,
nel senso che i dati vengono “affidati” al repository affinché li conservi.

81Il comando git clone permette di creare una copia di un intero repository. In altre parole, non si
ottiene una semplice copia del codice, ma anche della cronologia di sviluppo di quel codice. Git chiama
il repository originale origin.

82Il comando git commit permette di creare nuovi commit. Ogni commit è identificato in maniera
univoca da un hash, che viene calcolato combinando insieme varie informazioni, come i cambiamenti
che sono stati apportati ai file rispetto all’ultimo commit, l’autore (opzionalmente i commit possono
anche essere firmati digitalmente con firma crittografica), la data ed ora di creazione, una spiegazione
relativa ai contenuti, ecc. e l’hash dell’ultimo commit. Questo ultimo elemento rende la catena dei
commit a prova di manomissione. Se si modifica un commit all’interno del repository, si deve ricalcolare
il suo hash, e conseguentemente, l’hash di tutti i commit successivi. Questo repository manipolato sarà
valido, perché gli hash sono corretti, ma conterrà una serie di commit che non esistono con le copie del
repository non manipolate, e pertanto, non sarà sincronizzabile con esse.

83Il comando git push invia i commit presenti nella propria copia del repository al repository originale,
mentre git pull permette di scaricare i nuovi commit nel repository originale nel proprio. È importante
notare che git push può essere usato solamente dagli utenti che hanno sono stati autorizzati ad usarlo, e
non da chiunque.

84Il comando git branch permette di creare dei “rami”. Un “ramo” consiste in una serie di commit, ed
un nome per identificarli. Normalmente, un repository ha un ramo principale (master, main o trunk), che
contiene il codice considerato stabile ed affidabile, e uno o più rami chiamati topic o feature branches, che
contengono i commit non ancora considerati stabili. Questo permette agli sviluppatori di sperimentare
liberamente, perché è sempre possibile tornare al ramo principale, ed ignorare le modifiche.

85Prima di usare il codice, è necessario confermare che il repository sia integro. L’uso di hash
permette di rilevare qualsiasi modifica (accidentale o intenzionale) al repository con il comando git fsck
(abbreviazione di file-system check).

86Il comando git checkout può essere usato per estrarre un commit specifico. È il comando che
permette di garantire in piena misura la riproducibilità del software di analisi, anche a distanza di tempo.
A questo fine, è necessario indicare l’hash del commit è stato usato per svolgere l’analisi nella relazione.

87Ad esempio, è possible esaminare un repository per studiare i casi di violazione delle licenze.
GlobaLeaks è distribuito con la licenza copyleft AGPL. L’ANAC modifica GlobaLeaks, ed il 14 gennaio

80

• Esaminare quali commit hanno modificato un determinato file;88

• Individuare l’esatto commit che ha introdotto un certo bug.89

3.2.5 Contribuzioni di terze parti

Le contribuzioni di terze parti sono una conseguenza naturale dello sviluppo del

software libero. Se tutti hanno il diritto di ottenere una copia del codice e modificarlo,

chi corregge dei bug, o aggiunge delle funzionalità nella propria copia può desiderare

di condividere questi miglioramenti con gli sviluppatori originali.

Queste modifiche sono chiamate patch.90 Il solo fatto che un soggetto terzo invia

una patch agli sviluppatori originali non significa che sarà automaticamente inclusa,91

perché il software può essere libero e open-source, ma closed-contribution.92

È utile che gli sviluppatori del software libero ad uso scientifico definiscano un

processo per accettare le contribuzioni:

• Indicare il tipo di patch che gli sviluppatori desiderano;93

2019 lo distribuisce sotto il nome di OpenWhistleblowing con una licenza diversa, la Licenza Pubblica
dell’Unione Europea. Dopo qualche mese, la licenza viene correttamente ripristinata alla AGPL. V.
Centro Hermes, The Italian National Anti-Corruption Authority (ANAC) and the Hermes Center settle
a dispute over the aplication of the AGPL license to GlobaLeaks-based OpenWhistleblowing software,
2020, https://web.archive.org/web/20201019132745/https://www.globaleaks.org/anac-and-
the-hermes-center-settle-a-dispute-over-the-application-of-the-agpl-license-to-globaleaks-based-
openwhistleblowing-software/. È possibile visualizzare i commits che hanno modificato il file “LICENSE”
(v. https://github.com/anticorruzione/openwhistleblowing/commits/master/LICENSE), e notare che la
violazione della licenza AGPL è iniziata il 14 gennaio 2019, ed è terminata il 24 ottobre 2019.

88Il comando git blame (letteralmente, “dare la colpa”), permette di associare ad ogni riga di codice
l’ultimo commit che l’ha aggiunta o modificata.

89Usando il comando git bisect.
90Letteralmente, “pezze”, perché saranno metaforicamente “cucite” all’interno del codice.
91Questo è forse il malinteso più comune riguardo il software libero: se il codice è libero, e quindi

chiunque è libero di inviare patch, allora qualsiasi contribuzione sarà accettata.
92Ad esempio, litestream era un progetto che non accettava contribuzioni da parte di terzi. V. B.

Johnson, litestream, 2021, https://github.com/benbjohnson/litestream/tree/4d41652c12c182d7f0721cc8e
da0e3c78d98bae0. Attualmente il progetto accetta contribuzioni di terze parti.

93È utile che gli sviluppatori indichino sia i goals (obiettivi) del progetto, che i non-goals (obiettivi
al di fuori dell’ambito del progetto). I non-goals permettono di concentrare gli sforzi di sviluppo sugli
elementi realmente essenziali, e di evitare il feature creep (eccesso di funzionalità). È preferibile avere
pochi strumenti di analisi altamente affidabili, che un grande numero di metodi il cui funzionamento
non è stato verificato in maniera esaustiva.

81

https://web.archive.org/web/20201019132745/https://www.globaleaks.org/anac-and-the-hermes-center-settle-a-dispute-over-the-application-of-the-agpl-license-to-globaleaks-based-openwhistleblowing-software/
https://web.archive.org/web/20201019132745/https://www.globaleaks.org/anac-and-the-hermes-center-settle-a-dispute-over-the-application-of-the-agpl-license-to-globaleaks-based-openwhistleblowing-software/
https://web.archive.org/web/20201019132745/https://www.globaleaks.org/anac-and-the-hermes-center-settle-a-dispute-over-the-application-of-the-agpl-license-to-globaleaks-based-openwhistleblowing-software/
https://github.com/anticorruzione/openwhistleblowing/commits/master/LICENSE
https://github.com/benbjohnson/litestream/tree/4d41652c12c182d7f0721cc8eda0e3c78d98bae0
https://github.com/benbjohnson/litestream/tree/4d41652c12c182d7f0721cc8eda0e3c78d98bae0

• Definire i requisiti per la patch,94 e le modalità di code review (revisione del

codice), per verificare la qualità del codice;95

• Definire i soggetti che hanno il write access (accesso in scrittura) sul repository

disponibile al pubblico, e che contiene il codice sorgente;96

• Infine, è utile richiedere l’accettazione di un CLA (contributor license agreement,

accordo sulla licenza per chi contribuisce) come condizione per includere il

codice di terze parti.97

La recente backdoor98 trovata all’interno del software xz (CVE-2024-3094) non

dimostra che il modello di sviluppo aperto può facilitare gli attacchi informatici99

94Questi requisiti interessano ai contributori esterni. Ad esempio, il kernel Linux ha delle linee-guida
dettagliate sul contenuto e formato per le patch. V. Comunità di sviluppo del kernel, Submitting patches:
the essential guide to getting your code into the kernel, n.d., https://web.archive.org/web/20180828081227
/https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html

95Questi elementi riguardano l’organizzazione interna del progetto, ma per motivi di trasparenza, è
preferibile renderli pubblici. In particolare, si devono indicare la persona o persone che andranno a
controllare che la patch sia pertinente al progetto, che segue lo stile del codice seguito dal progetto,
che non presenti bug manifestamente evidenti, e che non contenga contribuzioni in mala fede. Ad
esempio, c’è stato un esperimento in cui dei ricercatori hanno inviato delle patch contenenti bug al
kernel Linux, allo scopo di verificare se gli addetti alla code review le avrebbero rigettate o meno. V.
Quishi Wu, Kangjie Lu, «On the Feasibility of Stealthily Introducing Vulnerabilities in Open-Source
Software via Hypocrite Commits», 2021, https://web.archive.org/web/20210928192905/http://www.
coding-guidelines.com/code-data/OpenSourceInsecurity.pdf e S. J. Vaughan-Nichols, Greg Kroah-
Hartman bans University of Minnesota from Linux development for deliberately buggy patches, 2021,
https://web.archive.org/web/20210421203003/https://www.zdnet.com/article/greg-kroah-hartman-
bans-university-of-minnesota-from-linux-development-for-deliberately-buggy-patches/.

96Questo è il punto più importante. Anche se chiunque può scaricare una copia del repository,
modificarla, e inviare una patch, soltanto alcune persone possono effettivamente includere la patch
all’interno del repository originale. Volendo, è possibile creare un fork (bivio), ossia, una copia del
repository originale che viene gestita da sviluppatori diversi, e contiene le modifiche di questi ultimi. Di
solito i fork sono creati se il progetto originale è stato abbandonato, oppure se gli sviluppatori originali
si rifiutano di includere delle patch.

97L’obiettivo è di evitare dubbi riguardo a chi appartengano i diritti intellettuali relativi al codice. Ad
esempio, la FSF richiede che i terzi, che contribuiscono codice a programmi di cui la FSF detiene il diritto
d’autore, conferiscano alla FSF i diritti d’autore relativi alla loro contribuzione. V. E. Moglen,Why the FSF
Gets Copyright Assignments from Contributors, 2022, https://web.archive.org/web/20220102214048/https:
//www.gnu.org/licenses/why-assign.html.

98Un tipo di attacco informatico, dove si inserisce una “porta di servizio” nel codice, che permette
l’esecuzione di comandi arbitrari.

99Al contrario, è stato proprio il fatto che il codice sorgente era disponibile che ha permesso ad un
ricercatore di sicurezza di studiare il funzionamento della backdoor. V. A. Freund, backdoor in upstream
xz/liblzma leading to ssh server compromise, 2024, https://web.archive.org/web/20240403232949/https:
//openwall.com/lists/oss-security/2024/03/29/4.

82

https://web.archive.org/web/20180828081227/https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://web.archive.org/web/20180828081227/https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://web.archive.org/web/20210928192905/http://www.coding-guidelines.com/code-data/OpenSourceInsecurity.pdf
https://web.archive.org/web/20210928192905/http://www.coding-guidelines.com/code-data/OpenSourceInsecurity.pdf
https://web.archive.org/web/20210421203003/https://www.zdnet.com/article/greg-kroah-hartman-bans-university-of-minnesota-from-linux-development-for-deliberately-buggy-patches/
https://web.archive.org/web/20210421203003/https://www.zdnet.com/article/greg-kroah-hartman-bans-university-of-minnesota-from-linux-development-for-deliberately-buggy-patches/
https://web.archive.org/web/20220102214048/https://www.gnu.org/licenses/why-assign.html
https://web.archive.org/web/20220102214048/https://www.gnu.org/licenses/why-assign.html
https://web.archive.org/web/20240403232949/https://openwall.com/lists/oss-security/2024/03/29/4
https://web.archive.org/web/20240403232949/https://openwall.com/lists/oss-security/2024/03/29/4

ma al contrario, dimostra la necessità di svolgere una rigorosa code-review anche nei

confronti di patch introdotte da sviluppatori considerati affidabili.100

3.2.6 Sviluppo trasparente del software

In generale, lo sviluppo del software libero deve essere condotto nella maniera

più trasparente possibile.101 Chi sviluppa software libero è tenuto (idealmente) a

condividere non solo il codice, ma anche:

• Informazioni come la documentazione progettuale, le discussioni fra gli

sviluppatori che sono rilevanti per il progetto, gli obiettivi di medio e lungo

termine, e così via;102

• Le qualificazioni dei soggetti che hanno contribuito al progetto;103

• Le discussioni fra utenti, o fra sviluppatori ed utenti, su come usare il software;104

• Le discussioni riguardo la segnalazione di bug;105

• Le discussioni a seguito dell’invio di patch;106

100V. sez. “Backstory” in Akamai Security Intelligence Group, XZ Utils Backdoor — Everything You
Need to Know, and What You Can Do, 2024, https://web.archive.org/web/20240403225340/https:
//www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know.

101Per “trasparenza” si fa riferimento allo stesso valore tipico del diritto amministrativo, che serve a
garantire un controllo diffuso sull’attività ed organizzazione nel diritto amministrativo. V. M. Clarich,
op. cit., pp. 153–154, 306–307.

102Sono tutte informazioni che hanno rilevanza solo “interna”, ma che comunque non sono “riservate”,
e che quindi è opportuno rendere disponibili al pubblico, anche se l’utilità di condividerle non è
immediatamente apparente. Anche il solo fattore psicologico di sapere che il progetto si comporta come
se “non abbia nulla da nascondere” ispira fiducia nell’opera degli sviluppatori.

103Nel diritto amministrativo, è fondamentale dimostrare che le persone abbiano le competenze
necessarie per ricoprire una determinata carica. Nello sviluppo del software libero, è utile dimostrare
che il software non viene necessariamente sviluppato solo da dilettanti e volontari, ma anche da persone
con esperienza professionale, o impiegati di compagnie che hanno pubblicato del software libero.

104Si potrebbe affermare che queste discussioni sono una forma ulteriore di documentazione per il
software, specie se rispondono a domande come, “Come posso fare per …?” (spiegano come raggiungere
un certo risultato), oppure “È possibile usare questo software per …?” (definiscono la destinazione d’uso
del software).

105Anche queste discussioni sono una forma di documentazione, perché individuano le situazioni in
cui un bug si verifica, le possibili soluzioni alternative da usare fino alla sua soluzione, indicano come il
bug è stato risolto, possono essere utili per la soluzione di bug futuri, ecc.

106Così come le discussioni per i bug, formano una sorta di “documentazione storica” per il codice, e
servono a spiegare le motivazioni per cui il codice è stato modificato in un certo modo.

83

https://web.archive.org/web/20240403225340/https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know
https://web.archive.org/web/20240403225340/https://www.akamai.com/blog/security-research/critical-linux-backdoor-xz-utils-discovered-what-to-know

• Impostare un sistema di CI (continuous integration, integrazione continua).107

Per gestire quanto sopra indicato, si possono seguire due strade.

La prima consiste nell’usare servizi integrati, ma proprietari, come GitHub108 o

GitLab.109 Il vantaggio è la facilità d’uso,110 lo svantaggio è la dipendenza da una

piattaforma proprietaria.111

La seconda è di usare alternative ai servizi proprietari che siano software libero,

come Gitea,112 e fare self-hosting.113 Il vantaggio è che si ottiene il pieno controllo della

piattaforma,114 ma al tempo stesso, si diventa responsabili dell’amministrazione del

server su cui i dati risiedono.115

107Un sistema CI permette di eseguire i tests e compilare il software in maniera automatica, appena un
commit viene pubblicato, o prima di integrare una patch all’interno del codice. Possono essere impostati
per verificare che il software funzioni correttamente su più piattaforme e configurazioni, e forniscono
informazioni dettagliate a seguito di problemi. L’uso di un sistema di CI permette di individuare i
bug il prima possibile, e garantisce che il software continua a funzionare correttamente nel corso
dello sviluppo. V. RedHat.com, What is CI/CD?, https://web.archive.org/web/20231213065115/https:
//www.redhat.com/en/topics/devops/what-is-ci-cd.

108V. https://github.com/.
109V. https://about.gitlab.com/.
110I servizi offrono interfacce grafiche per molte operazioni, sono ampiamente documentati, i vari

componenti (gestione del codice, delle discussioni e bug, CI) sono già installati e configurati.
111Non si ha il pieno controllo della piattaforma (ad esempio, GitHub aveva temporaneamente

disattivato il repository di youtube-dl a seguito di una diffida da parte della RIAA: v. https://gi
thub.com/github/dmca/blob/1de32ff91eba5b48334b04d72bc69aa6cbb50359/2020/10/2020-
10-23-RIAA.md; il repository fu riattivato dopo alcune settimane, senza modifiche significative al
codice: v. A. Maxwell, GitHub Reinstated YouTube-DL But Restoring Forks is Apparently a Problem, 2021,
https://web.archive.org/web/20210417214135/https://torrentfreak.com/github-reinstated-youtube-dl-
but-restoring-forks-is-apparently-a-problem-210417/), si può cadere in situazioni di vendor lock-in (si
rimane “intrappolati” su un servizio, perché non offre il modo di esportare i dati), il servizio può usare
il codice o dati per finalità commerciali e senza il permesso degli sviluppatori (ad esempio, si pone il
problema se il codice rilasciato con licenza GPL possa essere usato per creare intelligenze artificiali che
generano codice: v. FOSSA Editorial Team, Analyzing the Legal Implications of GitHub Copilot, 2021,
https://web.archive.org/web/20221105223552/https://fossa.com/blog/analyzing-legal-implications-
github-copilot/).

112V. https://github.com/go-gitea/gitea, che ha un’interfaccia molto simile a quella delle piattaforme
proprietarie.

113Un servizio self-hosted è un servizio che viene amministrato in-house, dalla stessa persona che lo
usa, e non da terzi.

114Gitea è software libero, quindi è possibile leggere e modificare il codice sorgente, e non ci si deve
preoccupare il gestore del servizio possa sospendere l’accesso al repository.

115Con i servizi proprietari, lo sviluppatore non si deve minimamente preoccupare della gestione
del server (installazione e configurazione del software, configurazione del server, installazione degli
aggiornamenti, garanzia dell’uptime e della sicurezza informatica, ecc.) su cui risiedono i dati. Viceversa,
con il self-hosting, il rischio di attacchi informatici contro il codice aumenta notevolmente, dato che gli

84

https://web.archive.org/web/20231213065115/https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://web.archive.org/web/20231213065115/https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://github.com/
https://about.gitlab.com/
https://github.com/github/dmca/blob/1de32ff91eba5b48334b04d72bc69aa6cbb50359/2020/10/2020-10-23-RIAA.md
https://github.com/github/dmca/blob/1de32ff91eba5b48334b04d72bc69aa6cbb50359/2020/10/2020-10-23-RIAA.md
https://github.com/github/dmca/blob/1de32ff91eba5b48334b04d72bc69aa6cbb50359/2020/10/2020-10-23-RIAA.md
https://web.archive.org/web/20210417214135/https://torrentfreak.com/github-reinstated-youtube-dl-but-restoring-forks-is-apparently-a-problem-210417/
https://web.archive.org/web/20210417214135/https://torrentfreak.com/github-reinstated-youtube-dl-but-restoring-forks-is-apparently-a-problem-210417/
https://web.archive.org/web/20221105223552/https://fossa.com/blog/analyzing-legal-implications-github-copilot/
https://web.archive.org/web/20221105223552/https://fossa.com/blog/analyzing-legal-implications-github-copilot/
https://github.com/go-gitea/gitea

sviluppatori individuali non hanno le stesse risorse e competenze di una grande compagnia.

85

86

Capitolo 4

Software libero per l’informatica

forense

4.1 Uso del software libero nella pratica

I vantaggi del software libero descritti fino a questo momento non sono destinati a

rimanere lettera morta, perché esistono già programmi che possono essere utilizzati

nell’ambito delle attività dell’informatica forense. Questo capitolo darà un resoconto

non esaustivo1 del software libero esistente, inclusi i sistemi operativi liberi.

Si potrebbe dire che l’informatica forense è una disciplina che studia e gestisce una

serie di black boxes:2 l’hardware e software oggetto di analisi, e l’hardware e software

con cui viene condotta l’analisi, le reti e protocolli con cui le macchine comunicano

fra di loro, e così via.

Allo stesso tempo, si è dimostrato come l’informatica forense deve soddisfare

1Cercare di individuare tutto il software esistente per ciascuna branca dell’informatica forense
andrebbe fuori dall’ambito della trattazione. In ogni caso, il software è in continua evoluzione, e le
considerazioni svolte in questo momento potrebbero non valere nel futuro. Pertanto, ci si limiterà a
svolgere considerazioni generiche.

2Nel gergo dell’informatica, una black box (scatola nera) è uno strumento di cui si può osservare il
comportamento esterno, ma non si conosce l’esatto meccanismo di funzionamento interno. Non si sta
facendo riferimento alle “scatole nere” che vengono recuperate a seguito di incidenti di aeromobili o
imbarcazioni (che comunque possono essere di interesse per l’informatica forense, se contengono dati
digitali).

87

le esigenze del contraddittorio nel processo, e quindi si deve essere in grado di

spiegare nella maniera più completa e dettagliata possibile come si è giunti ad una

certa conclusione. Per questo motivo, si è sostenuta l’utilità del software libero per le

operazioni di analisi.

4.2 Sistema operativo libero

Il sistema operativo è il software3 più “fondamentale”. Come qualsiasi altro

programma, deve essere installato ed eseguito,4 ma la sua funzione è di fornire tutti

gli elementi necessari per il funzionamento di altri programmi.5

Ancora, così come esiste software libero, esistono anche sistemi operativi (quasi)

interamente liberi.6 Un sistema operativo libero7 presenta tutti i vantaggi tipici del

software libero. In particolare, è possibile studiare il funzionamento del sistema,8 ed è

3Meglio, “collezione di software”, dato che i sistemi operativi moderni sono complessi, e composti
da numerosi programmi. Ad esempio, il progetto “Linux From Scratch” offre una guida su come
creare un sistema Linux partendo da zero, e compilando tutto il software necessario usando il codice
sorgente. V. Gerard Beekmans, Linux From Scratch. Version 12.0, Bruce Dubbs (a cura di), 2023, https:
//web.archive.org/web/20230901165736/https://www.linuxfromscratch.org/lfs/view/stable/.

4Spesso il sistema operativo è già installato sui computer, e al primo avvio deve soltanto essere
configurato per la prima volta. In ogni caso, il sistema operativo è il primo programma che viene
eseguito quando il computer viene avviato.

5Ad esempio, il sistema operativo rileva e gestisce tutti i componenti hardware connessi al computer
(inclusi i supporti di memoria), gestisce la memoria del computer e l’esecuzione dei vari programmi,
ecc.

6In alcuni casi, è necessario includere software non-libero per far funzionare alcuni componenti
hardware, come la connessione Wi-Fi, o la scheda video. Ad esempio, il programma per installare la
distribuzione GNU/Linux Debian tradizionalmente non includeva questo tipo di software, perché per
motivi ideologici, voleva rimanere un sistema composto interamente da software libero. L’installazione
di questo software doveva essere fatta manualmente, in modo che l’utente sia pienamente consapevole
che il sistema contiene componenti non-liberi. Tuttavia, seguito di una discussione nel progetto il
programma per l’installazione è stato modificato, ed il programma per l’installazione di Debian 12
adesso include anche i componenti non-liberi. V. Autori di Debian Wiki, Firmware, 2023, https://web.ar
chive.org/web/20230720195706/https://wiki.debian.org/Firmware.

7Fatta salva l’eccezione dei componenti non-liberi, il cui impatto sul funzionamento del sistema
è limitato (sono necessari per usare alcuni componenti hardware, ma non pregiudicano il corretto
funzionamento del software).

8Dato che si ha accesso al codice sorgente è possibile verificare come il sistema operativo è stato
progettato, e valutare la presenza di elementi che possono influire in positivo o negativo sull’affidabilità
delle analisi. Dal punto di vista processuale il margine di discussione all’interno del contraddittorio è
molto più ampio rispetto al software proprietario. Si riduce così il numero di black boxes all’interno del
procedimento, perché almeno gli strumenti di analisi sono liberamente esaminabili.

88

https://web.archive.org/web/20230901165736/https://www.linuxfromscratch.org/lfs/view/stable/
https://web.archive.org/web/20230901165736/https://www.linuxfromscratch.org/lfs/view/stable/
https://web.archive.org/web/20230720195706/https://wiki.debian.org/Firmware
https://web.archive.org/web/20230720195706/https://wiki.debian.org/Firmware

possibile creare e distribuire copie del sistema.9

I sistemi operativi liberi con la maggiore utilizzazione sono le distribuzioni

GNU/Linux.10 Generalmente, ogni distribuzione offre un proprio package manager

(gestore di pacchetti).11 I pacchetti contengono di solito contengono software,12 ma

possono contenere anche soltanto dati.13 I pacchetti sono generalmente preparati

dagli stessi sviluppatori della distribuzione,14 ma è possibile per sviluppatori terzi

creare i propri pacchetti.15 Distribuzioni diverse usano strategie diverse, ciascuna con

i propri vantaggi e svantaggi:

• Le distribuzioni fixed-point sono stabili e ben testate,16 ma contengono software

datato;17

• Le distribuzioni rolling18 offrono il software più recente, al costo di una minore
9È possibile creare una copia dell’intero ambiente di analisi (inteso come sistema operativo e

programmi installati) che è stato usato da una parte processuale, offrirlo alla controparte, e conservarlo
nel caso in cui sia necessario ripetere le analisi in un momento successivo.

10“GNU” è il nome del sistema operativo (il software di base necessario per il funzionamento del
sistema, come un programma per eseguire comandi, editor di testo, compilatori, programmi per
visualizzare i manuali, ecc.), “Linux” è il nome del kernel (il componente del sistema operativo che gestisce
l’hardware, come supporti di memoria, schede audio, video e di rete, la RAM, tastiera, mouse, altre
periferiche, ecc.). Spesso si usa solo il termine “Linux” per riferirsi in maniera generica alle distribuzioni
Linux, ma è improprio. Non esiste “un” sistema operativo chiamato Linux, e “Linux” di per sé non è un
sistema operativo, ma uno dei componenti necessari per un sistema operativo. Per dettagli, v. Richard
Stallman, «Linux and the GNU System», 2021, https://web.archive.org/web/20211109122924/http:
//www.gnu.org/gnu/linux-and-gnu.en.html.

11Ad esempio, Debian e Ubuntu usano APT, Fedora usa DNF, Arch Linux usa Pacman, ecc.
12Di solito come codice macchina, ma è possibile scaricare pacchetti che contengono solo codice

sorgente. I pacchetti includono anche i file di configurazione, la documentazione del software, ecc.
13I pacchetti possono contenere risorse aggiuntive per il software. Ad esempio, font, dizionari

aggiuntivi per un correttore ortografico, ecc.
14Alcune distribuzioni offrono soltanto ed esclusivamente software libero (per una lista, v. https:

//www.gnu.org/distros/free-distros.en.html), mentre altre permettono di installare anche software
proprietario, se l’utente lo desidera.

15Ad esempio, il software proprietario viene spesso reso disponibile per Linux come un pacchetto in
formato DEB e/o RPM, che possono essere installati rispettivamente su Ubuntu e Fedora con APT e
DNF.

16Dato che i rilasci sono infrequenti, è possibile garantire che il software contenga meno bug possibili,
e fra i rilasci, si può contare sul fatto che installare il software è un’azione riproducibile, perché non ci
sono cambiamenti.

17Distribuzioni che aggiornano i pacchetti in maniera “sincrona”: aggiornare la distribuzione permette
anche di aggiornare i pacchetti, ma fino al rilascio della nuova versione della distribuzione (che potrebbe
avvenire dopo mesi o anni), i pacchetti ricevono solo aggiornamenti relativi per la sicurezza e bug
particolarmente gravi.

18Distribuzioni che aggiornano i pacchetti in maniera “asincrona”: ogni pacchetto può essere

89

https://web.archive.org/web/20211109122924/http://www.gnu.org/gnu/linux-and-gnu.en.html
https://web.archive.org/web/20211109122924/http://www.gnu.org/gnu/linux-and-gnu.en.html
https://www.gnu.org/distros/free-distros.en.html
https://www.gnu.org/distros/free-distros.en.html

stabilità e riproducibilità;19

• Nix è un package manager che è in grado di installare più versioni dello stesso

programma senza che entrino in conflitto.20 NixOS è una distribuzione Linux

che usa Nix come il suo package manager.21

Con tutti i package manager si pongono due problemi: l’affidabilità di dati scaricati

da internet22 (risolto con tecniche come l’uso di firme digitali)23 e l’affidabilità del

software compilato da altri24 (risolto con tecniche di reproducible build).

Nel tempo, data la flessibilità offerta dalle distribuzioni GNU/Linux, sono state

create delle distribuzioni specializzate per l’informatica forense, che raccolgono

software libero, tra cui CAINE,25 DEFT,26 SIFT Workstation,27 Kali Linux,28 BackBox

Linux,29 ed altre. Le distribuzioni specializzate hanno varie caratteristiche in comune:

• Possono essere avviate in modalità live,30 oltre che essere installate su un

aggiornato appena viene rilasciata una nuova versione.
19Data la frequenza degli aggiornamenti, non è possibile verificare il corretto funzionamento di ogni

pacchetto, e installare o aggiornare il sistema in momenti diversi produce risultati diversi, perché non è
possibile prevedere in anticipo quali pacchetti saranno installati.

20La descrizione di Nix è oggetto di una tesi di dottorato, v. Eelco Dolstra, «The purely functional
software deployment model», Utrecht University, 2006, https://dspace.library.uu.nl/handle/1874/7540.

21Eelco Dolstra, Andres Löh, «NixOS: a purely functional Linux distribution», 2008, https://github.c
om/edolstra/edolstra.github.io/blob/2eed3fdbff656d01fe5372e9bf322799de0eaba7/pubs/nixos-icfp2008-
submitted.pdf, p. 1.

22Per ragioni di efficienza, i pacchetti vengono offerti da più mirrors (lett. “specchi”), ossia server che
offrono una copia dei contenuti già disponibili su un altro server. Tuttavia, ogni mirror può modificare i
dati, dopo che ha ottenuto una copia. Ancora, mentre i dati sono in transito, è possibile che possano
essere alterati, ad esempio, con tecniche di deep packet inspection.

23Chi prepara il pacchetto vi applica anche la sua firma digitale prima di distribuirlo, per garantire la
sua integrità ed autenticità. Successivamente, il gestore di pacchetti verifica che la firma digitale sia
valida, e in presenza di errori non installa i pacchetti.

24In molti casi gli sviluppatori della distribuzione devono modificare il codice sorgente dei programmi
per adattarlo alle peculiarità della distribuzione. È fondamentale che queste modifiche siano messe a
disposizione del pubblico. Tuttavia, in generale, gli sviluppatori potrebbero introdurre qualsiasi modifica,
e sarebbe difficile rilevarle da parte degli utilizzatori della distribuzione.

25V. https://web.archive.org/web/20240119162336/https://www.caine-live.net/.
26Non più in sviluppo. Per un archivio della pagina principale del progetto, v. https://web.archive.or

g/web/20190101021304/http://www.deftlinux.net/.
27V. https://web.archive.org/web/20240111183952/https://www.sans.org/tools/sift-workstation/.
28V. https://web.archive.org/web/20240305095732/https://www.kali.org/.
29V. https://web.archive.org/web/20240328124301/https://linux.backbox.org/.
30Ossia, il sistema operativo viene copiato nella RAM, senza essere installato sul computer in maniera

90

https://dspace.library.uu.nl/handle/1874/7540
https://github.com/edolstra/edolstra.github.io/blob/2eed3fdbff656d01fe5372e9bf322799de0eaba7/pubs/nixos-icfp2008-submitted.pdf
https://github.com/edolstra/edolstra.github.io/blob/2eed3fdbff656d01fe5372e9bf322799de0eaba7/pubs/nixos-icfp2008-submitted.pdf
https://github.com/edolstra/edolstra.github.io/blob/2eed3fdbff656d01fe5372e9bf322799de0eaba7/pubs/nixos-icfp2008-submitted.pdf
https://web.archive.org/web/20240119162336/https://www.caine-live.net/
https://web.archive.org/web/20190101021304/http://www.deftlinux.net/
https://web.archive.org/web/20190101021304/http://www.deftlinux.net/
https://web.archive.org/web/20240111183952/https://www.sans.org/tools/sift-workstation/
https://web.archive.org/web/20240305095732/https://www.kali.org/
https://web.archive.org/web/20240328124301/https://linux.backbox.org/

computer;31

• Prendono ogni precauzione per evitare operazioni in scrittura sui dispositivi

che vengono collegati;32

• Includono del software pre-installato, in modo da garantire la piena

riproducibilità dell’ambiente di analisi, e quindi la ripetibilità delle analisi;33

• Offrono delle interfacce grafiche e strumenti software ad-hoc per velocizzare le

operazioni tipiche e la generazione del report finale.34

4.3 Software libero per acquisire i dati

Il prerequisito per analizzare i dati è la loro corretta acquisizione. L’acquisizione è

generalmente un atto irripetibile35 e pertanto è assolutamente necessario garantire la

massima trasparenza e affidabilità dell’operazione usando software libero.36

Se i dati risiedono su un supporto materiale che può essere collegato ad un

computer37 è possibile usare dd o ddrescue.

ddrescue è un comando specializzato per copiare dati da supporti che possono

presentare errori di lettura. Usa un algoritmo creato ad hoc per cercare di copiare quanti

più dati possibile, causando meno danni possibile al supporto.38 Inoltre, produce anche

un file di log chiamato mapfile, che permette di interrompere e riprendere l’operazione

fissa. Questo permette di usare la distribuzione direttamente sul sistema oggetto di acquisizione (ad
esempio, se non è possibile rimuovere i supporti contenuti al suo interno), e garantisce la massima
riproducibilità dell’ambiente di analisi, e ripetibilità dell’analisi (perché qualsiasi modifica fatta al
sistema viene persa dopo che il computer viene riavviato).

31E. Huebner, S. Zanero, op. cit., p. 75.
32Ibidem, p. 73.
33Ibidem, pp. 76–78.
34Ibidem, pp. 74–76, 78–79.
35Esiste il rischio che il supporto materiale subisca modifiche durante l’acquisizione, ed il rischio di

irripetibilità sopravvenuta, perché i dati si danneggiano o vengono cancellati.
36L’accesso al codice sorgente e la possibilità di distribuire liberamente copie garantiscono la

trasparenza, e permettono di valutare in maniera consapevole se il software sia affidabile o meno.
Viceversa, nel caso di software proprietario ci si deve affidare ciecamente al prodotto che viene fornito,
dato che non è possibile sapere in maniera altrettanto trasparente come è stato sviluppato.

37Ad esempio, un hard disk interno o esterno, memorie flash USB o SD, supporti ottici, ecc.
38V. sez. 4, “Algorithm” in Antonio Diaz Diaz, «GNU ddrescue Manual», 2023, https://web.archive.or

g/web/20240109210952/https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.html.

91

https://web.archive.org/web/20240109210952/https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.html
https://web.archive.org/web/20240109210952/https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.html

di acquisizione, e contiene informazioni diagnostiche dettagliate sullo stato di ogni

settore letto dal disco.39

Se non è possibile usare ddrescue, si può usare GNU dd.40 Il vantaggio principale

di dd è la sua ubiquità sui sistemi GNU/Linux, dato che è un comando standard.41

Lo svantaggio principale è la sua semplicità: dd è un comando generico, e non

offre meccanismi sofisticati di gestione degli errori,42 o informazioni diagnostiche

dettagliate.43

Se i dati sono su embedded devices44 è necessario controllare le opzioni disponibili,

caso per caso. In generale, si possono seguire due strade.

Potrebbe essere possibile svolgere l’acquisizione usando lo stesso dispositivo, se

(congiuntamente) quest’ultimo usa un sistema operativo basato su GNU/Linux, è

possibile connettersi da remoto a quel dispositivo, è possibile eseguire comandi sul

dispositivo ed è possibile trasmettere dati all’esterno del dispositivo.45

In alternativa, nel caso in cui il produttore del dispositivo offre uno strumento ad

hoc per l’estrazione di dati o creazione di backup, è possibile eseguirlo all’interno di

una macchina virtuale creata con software libero.46

39V. sez. 8, “Mapfile structure”, in ivi.
40V. sez. 11.2, “dd: Convert and copy a file” in Free Software Foundation, «GNU Coreutils», cit.
41Fa parte delle GNU coreutils, e la sua presenza è richiesta dallo standard Linux Standard Base.
42Di default, dd si arresta dopo il primo errore di lettura. È possibile usare le opzioni conv=noerror,sync

affinché dd continui a seguito di errori, e riempia le parti che non è stato possibile leggere con zeri.
43dd non produce un mapfile, e quindi offre molte meno informazioni rispetto a ddrescue.
44Intesi come dispositivi per cui non è possibile estrarre il supporto di memoria che contiene i dati.

Ad esempio, gli smartphones, apparecchiature mediche, autoveicoli, ecc.
45Ad esempio, se si può accedere al dispositivo mediante ssh, si può usare md5sum e sha1sum per

calcolare l’hash dei file, usare tar per creare un archivio con i file da estrarre, scp per copiarlo all’esterno.
Naturalmente, nella pratica è necessario verificare la presenza di comandi utili per l’operazione di
acquisizione.

46Ad esempio, con VirtualBox o QEMU. È preferibile usare una macchina virtuale in modo da tenere
traccia dell’ambiente che è stato usato per l’acquisizione dei dati. Il programma per l’estrazione potrebbe
essere anche proprietario, ma non è un problema, perché si può presupporre che uno strumento per la
creazione di backup creato dal produttore stesso del dispositivo abbia tutto l’interesse a copiare i dati
nella maniera più completa ed affidabile possibile. Esistono anche strumenti per la mobile forensics di
terze parti in grado di acquisire i dati, ma si pone il problema della loro affidabilità. Se lo strumento è in
grado di leggere tutti i dati presenti sul dispositivo, ma deve forzare le misure di sicurezza esistenti
per farlo, e non può spiegare in dettaglio come le ha forzate (per ragioni di segreto industriale, perché
altrimenti il produttore del dispositivo rilascerebbe un aggiornamento di sicurezza, ecc.), è difficile
potersi fidare a pieno della genuinità del risultato.

92

Purtroppo, entrambe le modalità presentano tre svantaggi, difficilmente superabili:

la dipendenza da strumenti proprietari,47 la quantità di dati che è possibile estrarre,48

e la loro irripetibilità intrinseca.49

Per la network forensics, Wireshark50 è un software maturo, in sviluppo da più di

20 anni, e permette di acquisire ed analizzare tutto il traffico di rete. In particolare, con

alcuni accorgimenti, può essere usato per eseguire l’acquisizione forense di pagine

web.51

Esistono anche programmi che, pur non essendo stati sviluppati specificamente

per l’informatica forense, permettono di acquisire quante più informazioni possibili

da servizi proprietari disponibili su internet.52 Ad esempio:

• Rclone53 permette di acquisire dati da piattaforme cloud;54

• Yt-dlp55 può scaricare video da Youtube e numerose altre piattaforme;56

• Instaloader57 può scaricare immagini e video da Instagram;

• DiscordChatExporter58 permette di estrarre un log dei messaggi su Discord.

47In particolare, non si ha accesso al codice sorgente del sistema operativo del dispositivo oggetto di
acquisizione, o dello strumento con cui si crea il backup del dispositivo.

48È molto probabile che esistano meccanismi di sicurezza che impediscono l’accesso a tutti i file.
49Le operazioni di acquisizione vengono svolte mentre il dispositivo è acceso, e l’esecuzione dei

comandi o del backup modifica lo stato del dispositivo.
50V. https://web.archive.org/web/20240101043715/https://www.wireshark.org/.
51In primo luogo, è necessario impostareWireshark inmodo che possa catturare il traffico generato dal

browser (v. sez. “Using the (Pre)-Master-Secret” in https://web.archive.org/web/20230724183942/https:
//wiki.wireshark.org/TLS). Dopo che Wireshark ha iniziato ad acquisire i pacchetti, ma prima e dopo
che le pagine da acquisire sono state visitate, è utile visitare il sito internet di una testata giornalistica,
come modo per provare che la cattura è avvenuta in un determinato momento. Ancora, è utile registrare
lo schermo durante lo svolgimento delle operazioni, ed è utile eseguirle all’interno di una macchina
virtuale, in modo da lasciare quante più tracce possibili dello svolgimento dell’operazione.

52In molti casi, è possibile acquisire questi contenuti usando un semplice web browser. Tuttavia, per
acquisire i contenuti in blocco, è preferibile usare uno strumento specifico. Nell’usare questi strumenti,
è importante controllare la documentazione, e attivare le opzioni che forniscono all’utente quante più
informazioni diagnostiche possibile.

53V. https://web.archive.org/web/20240103231619/https://rclone.org/.
54Ad esempio, Dropbox, Google Drive, OneDrive, ecc. Per una lista completa, v. https://web.archive.

org/web/20240112155053/https://rclone.org/overview/.
55V. https://github.com/yt-dlp/yt-dlp.
56V. https://github.com/yt-dlp/yt-dlp/blob/8463fb510a58050ec118b3ae17bf00d08ea7b881/supportedsit

es.md.
57V. https://github.com/instaloader/instaloader.
58V. https://github.com/Tyrrrz/DiscordChatExporter.

93

https://web.archive.org/web/20240101043715/https://www.wireshark.org/
https://web.archive.org/web/20230724183942/https://wiki.wireshark.org/TLS
https://web.archive.org/web/20230724183942/https://wiki.wireshark.org/TLS
https://web.archive.org/web/20240103231619/https://rclone.org/
https://web.archive.org/web/20240112155053/https://rclone.org/overview/
https://web.archive.org/web/20240112155053/https://rclone.org/overview/
https://github.com/yt-dlp/yt-dlp
https://github.com/yt-dlp/yt-dlp/blob/8463fb510a58050ec118b3ae17bf00d08ea7b881/supportedsites.md
https://github.com/yt-dlp/yt-dlp/blob/8463fb510a58050ec118b3ae17bf00d08ea7b881/supportedsites.md
https://github.com/instaloader/instaloader
https://github.com/Tyrrrz/DiscordChatExporter

FIT59 è un software integrato per l’acquisizione forense di pagine web, che combina

le funzionalità di un gran numero di librerie e programmi di terze parti60 con gli

strumenti utili per l’informatica forense.61 Il fatto che sia un software relativamente

recente62 non deve scoraggiare il suo uso, perché allo stesso tempo, è anche un software

concettualmente semplice,63 e pertanto, la quantità di codice realmente “innovativa”,

di cui si deve provare il corretto funzionamento, è limitata.

In alcuni casi, i servizi offrono già strumenti per esportare dati,64 ma questi servizi

sono proprietari.65 Tuttavia, in alcuni casi lo strumento per esportare dati potrebbe

essere software libero. Ad esempio, il client di Telegram è software libero66 e permette

di scaricare una copia dei dati relativi all’account di un utente.67

La memory forensics68 tradizionalmente veniva quasi completamente ignorata69

perché presentava (e continua a presentare) varie difficoltà. Le memorie volatili si

disperdono rapidamente appena il dispositivo viene spento,70 ma se il dispositivo è

acceso, l’acquisizione della memoria va a modificare lo stato della memoria stessa.71

59Acronimo di Freezing Internet Tool, v. https://github.com/fit-project/fit.
60Tra cui anche i già menzionati yt-dlp e instaloader, perché sono inclusi nella lista delle dipendenze.

V. https://github.com/fit-project/fit/blob/cbf8d43d8dc82587b93fbfdb9e0dc14ec0b94ef1/poetry.lock.
61Come la cattura del traffico di rete, la registrazione dello schermo, il calcolo di più hash per i file

scaricati, la generazione automatica di un resoconto delle operazioni compiute.
62FIT è stato pubblicato per la prima volta nel 2021 da Fabio Zito (v. https://github.com/zitelog/fit),

come tentativo di riprodurre le funzionalità del software proprietario FAW (v. https://web.archive.org/
web/20240130043336/https://it.fawproject.com/) mediante software libero. Attualmente, continua ad
essere sviluppato da altri sviluppatori.

63L’unico ruolo che viene svolto “in prima persona” da FIT è di tenere uniti i vari componenti di
terze parti, che individualmente sono già largamente usati e collaudati.

64Ad esempio, Google offre Google Takeout per scaricare i dati relativi al proprio account (v. https:
//takeout.google.com/), e Apple permette di scaricare una copia dei dati collegati al proprio Apple ID (v.
https://web.archive.org/web/20230903043707/https://support.apple.com/en-us/102208).

65In linea generale, ci si può fidare che i dati non vengano modificati dal gestore del servizio, perché
non avrebbero nessun interesse a farlo. Il problema più rilevante è la quantità dei dati che è possibile
ottenere in questo modo.

66Usa la licenza GPLv3. V. https://github.com/telegramdesktop/tdesktop.
67V. https://web.archive.org/web/20180827090156/https://telegram.org/blog/export-and-more.
68Analisi forense di memorie volatili, ossia, la RAM.
69Le istruzioni per il sequestro di dati informatici prevedevano lo spegnimento del computer, senza

previa acquisizione della memoria. V. Amy L. Ayers, «Windows hibernation and memory forensics»,
Utica College ProQuest Dissertations Publishing, 2015, https://www.proquest.com/dissertations-
theses/windows-hibernation-memory-forensics/docview/1676462584/se-2, p. 7.

70Ibidem, p. 1.
71A. Gammarota, op. cit., p. 149.

94

https://github.com/fit-project/fit
https://github.com/fit-project/fit/blob/cbf8d43d8dc82587b93fbfdb9e0dc14ec0b94ef1/poetry.lock
https://github.com/zitelog/fit
https://web.archive.org/web/20240130043336/https://it.fawproject.com/
https://web.archive.org/web/20240130043336/https://it.fawproject.com/
https://takeout.google.com/
https://takeout.google.com/
https://web.archive.org/web/20230903043707/https://support.apple.com/en-us/102208
https://github.com/telegramdesktop/tdesktop
https://web.archive.org/web/20180827090156/https://telegram.org/blog/export-and-more
https://www.proquest.com/dissertations-theses/windows-hibernation-memory-forensics/docview/1676462584/se-2
https://www.proquest.com/dissertations-theses/windows-hibernation-memory-forensics/docview/1676462584/se-2

L’acquisizione presenta numerose problematiche tecniche,72 tra cui il fatto che

il formato dei dati contenuto nelle memorie volatili non è documentato in maniera

ufficiale, ed in ogni caso, cambia con frequenza.73

È sempre utile almeno provare ad acquisire i dati: nel caso peggiore saranno

inutilizzabili o irrilevanti, ma nel caso migliore si potrebbero trovare informazioni o

tracce utili per l’investigazione.74 Per acquisire la RAM si può usare WinPmem75 su

Windows, e LinPmem76 su Linux.

4.4 Software libero per conservare i dati

Dopo che i dati sono stati acquisiti, è necessario garantire la loro corretta

conservazione.

Programmi come BorgBackup77 e Restic78 permettono di creare copie di backup

dei dati, di proteggere i backup con la crittografia,79 e di verificare la loro integrità.80

Le copie di backup possono essere conservate su filesystem specializzati per

l’archiviazione dei file, come OpenZFS, che controlla automaticamente l’integrità dei

72Andrew Case, Golden G. Richard, «Memory forensics: The path forward», Digital Investigation,
vol. 20, 2017, https://www.sciencedirect.com/science/article/pii/S1742287616301529, pp. 23–33.

73La documentazione è assente nel caso dei sistemi operativi proprietari, come Windows e macOS.
Nei sistemi operativi che usano il kernel Linux, si può consultare il codice sorgente relativo alla
gestione della memoria. Dato che la memoria è volatile, non è necessario “standardizzare” il suo
formato, e assicurarsi che possa essere letto anche a distanza di tempo. V. Joe T. Sylve, Vico Marziale,
Golden G. Richard, «Modern windows hibernation file analysis», Digital Investigation, vol. 20, 2017,
https://www.sciencedirect.com/science/article/pii/S1742287616301487, pp. 16–22.

74Come ad esempio, la chiave crittografica per decrittare informazioni protette. V. Christopher
Hargreaves, Howard Chivers, «Recovery of Encryption Keys from Memory Using a Linear Scan», 2008
Third International Conference on Availability, Reliability and Security, 2008, pp. 1369–1376.

75V. https://github.com/Velocidex/WinPmem.
76V. https://github.com/Velocidex/Linpmem.
77V. https://web.archive.org/web/20240103151618/https://www.borgbackup.org/.
78V. https://web.archive.org/web/20240102073003/https://restic.net/.
79In modo da garantire la confidenzialità dei dati, anche nel caso di un data breach.
80In modo che sia possibile verificare che i dati non siano variati per bit rot o modifiche intenzionali

da parte di terzi, anche a distanza di tempo.

95

https://www.sciencedirect.com/science/article/pii/S1742287616301529
https://www.sciencedirect.com/science/article/pii/S1742287616301487
https://github.com/Velocidex/WinPmem
https://github.com/Velocidex/Linpmem
https://web.archive.org/web/20240103151618/https://www.borgbackup.org/
https://web.archive.org/web/20240102073003/https://restic.net/

dati.81 La creazione di copie dei dati può essere effettuata con Rsync,82 un programma

per la copia di dati che usa un algoritmo ad-hoc per assicurare che la copia sia identica

all’originale.83

La catena di custodia può essere redatta con Git. Il documento digitale che contiene

la catena può essere redatto in qualsiasi formato.84 Ogni volta che si aggiorna la catena

di custodia, si crea un nuovo commit, il commit viene firmato digitalmente da tutti i

partecipanti,85 ed i partecipanti ottengono una copia86 della catena digitale.87

4.5 Software libero per analizzare i dati

Per analizzare i dati, si possono seguire due strade.

La prima è di usare programmi di analisi integrati, come Autopsy.88 I vantaggi

sono che:

• Offrono un’interfaccia grafica unificata, che li rende più facili da usare, e permette

di svolgere le operazioni tipiche in maniera efficiente;

81Per una guida alle funzioni di base di ZFS, v. Autori di ArchLinux Wiki, ZFS/Virtual disks, 2023,
https://web.archive.org/web/20240202013900/https://wiki.archlinux.org/title/ZFS/Virtual_disks. La sez.
5 dimostra come ZFS può riparare i dati danneggiati.

82V. https://github.com/WayneD/rsync.
83In particolare, questo algoritmo ha due proprietà utili: il trasferimento dei file può essere interrotto

e ripreso in un secondo momento senza dover ricominciare dall’inizio, e calcola l’hash dei dati durante
il trasferimento, per garantire che l’originale e la copia contengano gli stessi dati. V. sez. “Rolling
checksum” in Andrew Tridgell, Paul Mackerras, «The rsync algorithm», 1998, https://web.archive.org/
web/20240124111006/https://rsync.samba.org/tech_report/tech_report.html.

84Git è in grado di gestire anche file binari (come un documento in formato .DOC, .DOCX, o .ODT),
non soltanto file di testo.

85Git supporta nativamente le firme GPG (GNU Privacy Guard) per i commit, ma è possibile usare
qualsiasi metodo diverso di firma digitale, purché la firma sia contenuta in un file che possa essere
conservato all’interno del repository.

86La copia viene creata con git clone. Se i partecipanti hanno già una copia della catena, possono
sincronizzare la loro copia con git pull.

87Distribuire copie dell’intera catena a più persone serve a garantire che esistano più copie di
backup della catena in circolazione. Inoltre, se qualcuno prova ad alterare la catena, o se la catena
viene danneggiata o persa per altri motivi, è possibile confrontare le copie in circolazione. Qualsiasi
modifica risulterà in repository divergenti, pertanto è facile trovare le copie autentiche e non manipolate
confrontando tutte le copie fra di loro: se almeno due o più copie sono uguali, salvo caso di collusione,
quelle copie rappresentano la catena originale.

88V. https://github.com/sleuthkit/autopsy.

96

https://web.archive.org/web/20240202013900/https://wiki.archlinux.org/title/ZFS/Virtual_disks
https://github.com/WayneD/rsync
https://web.archive.org/web/20240124111006/https://rsync.samba.org/tech_report/tech_report.html
https://web.archive.org/web/20240124111006/https://rsync.samba.org/tech_report/tech_report.html
https://github.com/sleuthkit/autopsy

• Permettono di generare in maniera automatica un report finale delle operazioni

svolte;

• In termini di capacità, sono paragonabili ai prodotti non-liberi.89

Lo svantaggio è che si è limitati dalle funzionalità del programma, e modificarlo

potrebbe essere difficile.90

La seconda è di usare più programmi di analisi, separati e specializzati, per svolgere

le analisi. Ad esempio, parte delle funzioni svolte da Autopsy può essere replicata

usando altri programmi:

• mount può essere usato per aprire l’immagine forense dei supporti;91

• md5sum e sha1sum per calcolare l’hash di file;92

• PhotoRec93 per cercare e recuperare file cancellati;

• file94 per determinare il formato del file in analisi;

• grep,95 ripgrep,96 ripgrep-all97 per eseguire ricerche di stringhe o espressioni

regolari98 all’interno di file e vari formati;
89Per un confronto tra Autopsy e altri prodotti commerciali, v. Dan Manson et al., «Is the Open

Way a Better Way? Digital Forensics Using Open Source Tools», 2007 40th Annual Hawaii International
Conference on System Sciences (HICSS’07), 2007. In ogni caso, anche se mancassero delle funzionalità
rispetto al software proprietario, ci si può fidare in misura maggiore delle funzionalità che sono presenti,
dato che è possibile studiare il loro funzionamento.

90Più il software è integrato, e più diventa necessario conoscere il suo esatto funzionamento per essere
in grado di modificarlo adeguatamente. Le uniche alternative sono studiare il codice (che comporta un
dispendio di tempo), oppure chiedere agli sviluppatori originali di introdurre le modifiche (che potrebbe
comportare un dispendio di denaro, per incentivare gli sviluppatori ad accettare o dare priorità alla
richiesta).

91Più precisamente, mount permette di montare una singola partizione. Se il disco contiene più
partizioni, è necessario prima identificarle con mmls, che fa parte di The Sleuth Kit (v. https://github.c
om/sleuthkit/sleuthkit). V. https://web.archive.org/web/20240405181601/https://superuser.com/questi
ons/562154/mounting-a-complete-disk-image-rescued-by-ddrescue/562158.

92Per calcolare l’hash di più file, è possibile usare i comandi find e xargs, v. https://web.archive.org/
web/20240222053711/https://stackoverflow.com/questions/545387/linux-compute-a-single-hash-for-a-
given-folder-contents/545413.

93V. https://web.archive.org/web/20240225063137/https://www.cgsecurity.org/wiki/PhotoRec
94V. https://github.com/file/file.
95V. https://web.archive.org/web/20240110035523/https://www.gnu.org/software/grep/.
96V. https://github.com/BurntSushi/ripgrep.
97V. https://github.com/phiresky/ripgrep-all.
98Le espressioni regolari permettono di cercare testo che corrisponde ad un certo modello. Per

un’introduzione alle espressioni regolari, v. G. Moschitta, Espressioni regolari: pattern, uso ed esempi,
2006, https://web.archive.org/web/20200919192017/https://www.html.it/articoli/espressioni-regolari/.

97

https://github.com/sleuthkit/sleuthkit
https://github.com/sleuthkit/sleuthkit
https://web.archive.org/web/20240405181601/https://superuser.com/questions/562154/mounting-a-complete-disk-image-rescued-by-ddrescue/562158
https://web.archive.org/web/20240405181601/https://superuser.com/questions/562154/mounting-a-complete-disk-image-rescued-by-ddrescue/562158
https://web.archive.org/web/20240222053711/https://stackoverflow.com/questions/545387/linux-compute-a-single-hash-for-a-given-folder-contents/545413
https://web.archive.org/web/20240222053711/https://stackoverflow.com/questions/545387/linux-compute-a-single-hash-for-a-given-folder-contents/545413
https://web.archive.org/web/20240222053711/https://stackoverflow.com/questions/545387/linux-compute-a-single-hash-for-a-given-folder-contents/545413
https://web.archive.org/web/20240225063137/https://www.cgsecurity.org/wiki/PhotoRec
https://github.com/file/file
https://web.archive.org/web/20240110035523/https://www.gnu.org/software/grep/
https://github.com/BurntSushi/ripgrep
https://github.com/phiresky/ripgrep-all
https://web.archive.org/web/20200919192017/https://www.html.it/articoli/espressioni-regolari/

• xxd99 per visualizzare i file in formato esadecimale;

• imagemagick100 ed ffmpeg101 possono essere usati per estrarre miniature e

anteprime di immagini e video;

• stat mostra la data di creazione, modifica e ultimo accesso per i file;

• Wireshark permette anche di analizzare i pacchetti che ha acquisito;

• Volatility102 offre strumenti per analizzare la copia della memoria che è stata

acquisita.

Il vantaggio di questi programmi è che possono essere combinati fra di loro

all’interno di uno script,103 che può essere:

• Generico, come nel caso di OCFA,104 CAINE,105 sfdumper ;106

• Specifico per le operazioni da svolgere nel caso concreto.107

La maggiore flessibilità viene controbilanciata dalla maggiore difficoltà d’uso,108 e

il fatto che si sta creando una soluzione ad-hoc, invece di usarne una generica.109

Le macchine virtuali offrono la possibilità di eseguire un sistema operativo,

chiamato guest (ospite) all’interno di un altro sistema operativo, detto host,110 e

possono trovare vari usi durante la fase dell’analisi.
99xxd viene usato dall’editor di testo vim. V. https://github.com/vim/vim/tree/00221487731ea1868c57

259c7aa0eb713cd7ade7/src/xxd.
100V. https://web.archive.org/web/20240102055502/https://imagemagick.org/
101V. https://web.archive.org/web/20240102043106/https://ffmpeg.org/
102V. https://web.archive.org/web/20240311040001/https://volatilityfoundation.org/the-volatility-

framework/.
103Un file che contiene una sequenza di comandi da eseguire.
104I moduli di OCFA avviano altre applicazioni per elaborare i dati, v. E. Huebner, S. Zanero, op. cit.,

p. 59.
105È un’interfaccia grafica intorno ad una serie di programmi, v. E. Huebner, S. Zanero, ivi, pp. 75–78.
106V. E. Huebner, S. Zanero, ivi, pp. 117 ss., e https://web.archive.org/web/20080303035227/https:

//sfdumper.sourceforge.net/.
107In questo caso, lo script serve come documentazione per l’elenco delle operazioni che sono state

compiute, ma permette di ripetere l’intera analisi semplicemente eseguendolo di nuovo.
108È necessario saper usare ogni singolo programma, che spesso non offrono interfacce grafiche, e

sapere come scrivere script per il trattamento dei dati.
109Pertanto, è necessario dimostrare l’affidabilità dei singoli programmi usati, e la ragionevolezza

dell’approccio seguito, mentre se si usa un programma integrato, basta solo dimostrare l’affidabilità del
singolo programma.

110Per maggiori dettagli sulla nozione di virtualizzazione, ed un elenco del software libero disponibile,
v. E. Huebner, S. Zanero, op. cit., pp. 26–28.

98

https://github.com/vim/vim/tree/00221487731ea1868c57259c7aa0eb713cd7ade7/src/xxd
https://github.com/vim/vim/tree/00221487731ea1868c57259c7aa0eb713cd7ade7/src/xxd
https://web.archive.org/web/20240102055502/https://imagemagick.org/
https://web.archive.org/web/20240102043106/https://ffmpeg.org/
https://web.archive.org/web/20240311040001/https://volatilityfoundation.org/the-volatility-framework/
https://web.archive.org/web/20240311040001/https://volatilityfoundation.org/the-volatility-framework/
https://web.archive.org/web/20080303035227/https://sfdumper.sourceforge.net/
https://web.archive.org/web/20080303035227/https://sfdumper.sourceforge.net/

In alcuni casi, il loro uso potrebbe essere necessario per esaminare a pieno

l’immagine forense.111

In altri casi, il loro uso potrebbe risultare utile ai fini dell’analisi. È possibile usare

contemporaneamente una distribuzione Linux (come host) e Windows (come guest).112

Ancora, è possibile duplicare le macchine virtuali, e creare delle snapshot del loro

stato.113

Infine, le macchine virtuali possono essere utilizzate per svolgere esperimenti

giudiziali, e ricostruire, in maniera controllata e ripetibile, lo svolgimento di fatti

all’interno di un sistema informatico.114

Eseguendo più macchine virtuali in parallelo, diventa possibile anche ricostruire

le dinamiche di un incidente informatico che ha coinvolto più sistemi.115

111Ad esempio, si pensi al caso in cui all’interno del sistema esistono dati protetti da crittografia, e
si conosce la password. La soluzione più semplice ed affidabile per accedere a quei dati è di avviare il
sistema, e decrittarli come lo farebbe un normale utente. Il sistema che è stato acquisito viene avviato
come un sistema operativo guest all’interno del sistema operativo host con cui si esegue l’analisi, i dati
vengono decrittati, e infine sono copiati dal sistema guest al sistema host, in modo che possano essere
analizzati.

112Questo permette di avere accesso agli strumenti di analisi disponibili su entrambi i sistemi operativi,
v. E. Huebner, S. Zanero, op. cit., p. 40.

113V. E. Huebner, S. Zanero, ivi, p. 36. Se le operazioni di analisi vengono compiute all’interno di
una macchina virtuale, è possibile duplicare l’ambiente di analisi, e quindi garantire la più completa
riproducibilità e ripetibilità dell’analisi. Chiunque ottenga una copia della macchina virtuale otterrà
anche una copia del sistema operativo e di tutti i programmi installati, ed è possibile avviarla in qualsiasi
momento. Creare una snapshot (instantanea) permette di annullare tutte le modifiche successive alla
sua creazione, e ritornare allo stato del sistema nel momento in cui era stata creata. Pertanto, si è liberi
di provare analisi o eseguire modifiche potenzialmente distruttive, perché è sempre possibile tornare ad
uno stato precedente.

114Come ad esempio, l’azione di un virus informatico sui dati dell’utente. V. A. Gammarota, op. cit.,
p. 197.

115Ad esempio, la diffusione di un virus informatico all’interno di più macchine. V. A. Gammarota, ivi,
pp. 197–198.

99

100

Conclusioni

La definizione ideale dell’informatica forense deve evidenziare che il trattamento

dei dati informatici è finalizzato al loro uso all’interno di un processo, e deve essere

formulata in modo che l’informatica forense trovi la massima applicazione possibile.

L’informatica forense si è sviluppata all’interno del diritto processuale penale. Con

l’introduzione di reati dove il bene giuridico protetto sono i dati informatici in sé,

diventava necessario sviluppare una disciplina che fosse in grado di ricostruire i fatti

relativi ai dati informatici, e riformare il codice di procedura, che invece era stato

pensato per fatti relativi al mondo materiale.

In Italia esiste una preferenza per le prove precostituite, che è particolarmente

pericolosa per le prove informatiche, perché ostacola la loro acquisizione e valutazione

all’interno del contraddittorio.

L’informatica forense incontra delle difficoltà importanti, perché il suo oggetto di

studio è oscuro (non è sempre facile studiare i programmi, protocolli, formati, ecc.),

instabile (la materia è in continua evoluzione) e fragile (i dati digitali possono essere

modificati con facilità, senza lasciare tracce).

Tuttavia, piuttosto che considerare lo studio dei dati informatici una causa persa

in partenza, è possibile usare quelle caratteristiche come un buon motivo per seguire

un approccio scientifico e rigoroso nello studio dell’informatica forense.

Se l’uso dei dati informatici a fini probatori richiede l’uso di conoscenze scientifiche,

allora è preferibile usare la perizia sia per acquisire, sia per valutare i dati informatici.

I vantaggi sono che il trattamento dei dati informatici viene eseguito da persone con

101

conoscenze specifiche fin dall’inizio, e quindi c’è un minore rischio di danneggiare i

dati, e se partecipano anche i consulenti tecnici, tutte le operazioni si possono svolgere

in contraddittorio.

Il secondo capitolo dimostra come l’informatica forense è una disciplina che si

presta ad essere regolata da più fonti. La struttura della prima parte del capitolo

segue le fasi del trattamento della prova secondo gli standard ISO, ma il contenuto dei

singoli capitoli richiama le norme contenute nel codice di procedura penale. Si è fatto

riferimento al codice di procedura penale colombiano per analizzare una possibile

disciplina della catena di custodia. Quanto richiesto dalla legge viene reinterpretato in

base a quanto è possible fare con l’informatica.

La conclusione della prima parte è che esiste uno stretto legame fra la scienza, il

processo, ed il software. Dato che la scienza ed il processo sono ispirati da principi simili

(peer-review e contraddittorio, motivazione degli atti e verificabilità degli esperimenti,

limitazione del segreti e pubblicazione dei risultati) è opportuno che principi analoghi

si applichino anche al software che viene usato dagli esperti all’interno del processo.

Questo obiettivo è pienamente raggiunto con l’uso del software libero. In

particolare, l’accesso al codice sorgente è necessario per soddisfare tutti e tre i principi,

e la licenza GPL serve proprio a garantire non solo che il software già libero rimanga

tale, ma anche che l’adozione della GPL si diffonda, a causa della interpretazione

data da Stallman per quanto riguarda l’uso di componenti GPL all’interno di altri

programmi.

Ancora, si dimostra che in generale, è preferibile usare il software libero, al posto

del software proprietario, e che in alcuni casi l’apparente superiorità del software

proprietario in realtà porta a costi e svantaggi nascosti. L’unico caso in cui è impossible

usare il software libero è per lo sviluppo di captatori informatici, per il solo fatto che la

loro modalità di funzionamento deve rimanere segreta. Ma il fatto che sia impossible

conoscere il funzionamento del captatore aggiunge ulteriori dubbi sulla sua utilità

come mezzo di prova.

102

Il terzo capitolo si concentra sugli aspetti più tecnici e pratici dello sviluppo del

software libero, andando ad individuare elementi concreti che possono essere usati

per argomentare a favore del suo uso e della sua affidabilità.

L’accesso al codice sorgente, che viene garantito dalle licenze libere, ha numerosi

vantaggi, perché permette di esaminare:

• Come i programmatori hanno cercato di risolvere i problemi creati dalle

caratteristiche sfavorevoli del linguaggio di programmazione usato;

• La documentazione relativa al codice stesso, e quindi di sapere come il

programma funziona;

• Se e come il codice di terze parti è stato integrato all’interno del software;

• L’uso di strumenti automatizzati che permettono di analizzare e correggere

problemi nel codice;

• L’uso di tests per garantire che il programma continua a funzionare

correttamente, anche a seguito di modifiche del codice.

Nel caso di programmi proprietari, tutti questi elementi generalmente non vengono

condivisi con il pubblico, perché sono strettamente legati allo sviluppo del software, e

pertanto non possono essere nemmeno valutati dai tecnici.

L’uso di tecniche come la containerization e le reproducible builds permettono di

garantire che il software funzioni sempre allo stesso modo, e sono utili per garantire

la ripetibilità e riproducibilità delle analisi.

Il capitolo si conclude con le buone pratiche relative alle modalità di sviluppo del

software.

Gli elementi fondamentali sono la definizione della funzione del programma, le

linee-guida per la sua progettazione, e la scelta di una licenza libera.

L’uso di un sistema di controllo di versione è utile sia per gli sviluppatori (perché

permette di sviluppare il software ed integrare le contribuzioni di terzi in maniera

ordinata), sia per gli utilizzatori finali (perché permette di ottenere facilmente copie del

103

software, di verificare l’integrità della propria copia, di estrarre una versione specifica

del programma in qualsiasi momento, e di valutare le differenze fra versioni).

Lo sviluppo del software libero deve essere ispirato alla massima trasparenza, e

alla pubblicazione non solo del codice del programma, ma anche di qualsiasi altro

elemento ad esso collegato.

Per quanto riguarda le contribuzioni di terze parti al codice libero, è importante

definire un processo per la loro accettazione, che a sua volta deve essere trasparente.

La recente backdoor trovata all’interno di xz non dimostra che il modello di sviluppo

aperto a terzi è intrinsecamente inaffidabile, ma piuttosto, l’importanza di prendere

precauzioni per evitare questo tipo di situazioni, e come è molto più semplice

individuare, studiare e correggere i difetti nel software quando chiunque può ottenere

una copia del codice sorgente del programma con facilità.

Il quarto capitolo indica alcuni esempi di software libero che sono già in uso.

Si enfatizza l’importanza di usare anche un sistema operativo libero, in modo da

ridurre al minimo il numero di “scatole nere” di cui non si può conoscere o studiare il

funzionamento in maniera agevole all’interno del processo di analisi. Esistono sistemi

operativi liberi specializzati per l’informatica forense.

I sistemi operativi liberi generalmente permettono di installare il software da un

archivio centralizzato, e gestito dagli stessi sviluppatori del sistema.

I problemi più importanti con l’installazione del software sono la tensione fra avere

la versione più aggiornata del software e avere un sistema facilmente riproducibile, e

la fiducia che si deve riporre in chi gestisce l’archivio. Per questi motivi, è preferibile

usare un sistema operativo libero specializzato, che contiene software preinstallato.

Per quanto riguarda l’acquisizione dei dati, esiste un numero ristretto di programmi

generalmente maturi, e usati da tempo. FIT rappresenta un’eccezione parziale, perché

è un programma recente, ma che fa largo uso di software di terze parti largamente

maturo.

Per quanto riguarda la conservazione dei dati, esistono programmi che permettono

104

di garantire la corretta conservazione e duplicazione dei dati. Le caratteristiche dello

strumento di controllo della versione Git permettono di utilizzarlo anche per la

redazione della catena di custodia.

Infine, per quanto riguarda l’analisi dei dati, si può scegliere fra due approcci.

Il primo è di usare uno strumento di analisi integrata come Autopsy, che offre

un’interfaccia grafica, ed è paragonabile in termini di funzionalità anche al software

proprietario.

Il secondo è di usare strumenti di analisi separati e specializzati, e di combinare

le loro funzionalità mediante un file che contiene le istruzioni da eseguire. Questo

approccio è più complesso, ma è anche più flessibile e maggiormente riproducibile.

Le macchine virtuali non sono uno strumento di analisi in sé, ma sono

estremamente utili per l’informatica forense, perché permettono di studiare il

funzionamento di un sistema, di creare ambienti di analisi riproducibili, e di svolgere

esperimenti giudiziali.

In conclusione, si può affermare che il software libero è il modello che risponde

meglio alle esigenze dell’informatica forense. I problemi che limitano la sua adozione

non sono problemi tecnici. Anche laddove abbia meno funzionalità del software

proprietario è sempre possibile migliorarlo, ed in ogni caso è sempre possibile studiare

e spiegare l’esatto funzionamento delle funzionalità già presenti.

Piuttosto, il vero ostacolo alla sua adozione sono dei problemi sociali. I tecnici

non usano il software libero perché non sono al corrente della sua esistenza (gli

sviluppatori del software libero generalmente non hanno le capacità economiche

per pubblicizzarlo), per sfiducia (i tecnici ritengono che il software libero non sia

sufficientemente sofisticato, o non si fidano del modello di sviluppo aperto) o per pura

inerzia (sono abituati ad un certo programma, e non hanno un incentivo sufficiente

per imparare ad usarne un altro).

In primo luogo, è necessario sensibilizzare i giuristi per quanto riguarda le esigenze

relative al trattamento dei dati informatici, e come il software libero si allinea alle

105

esigenze processuali, in modo che possano fare pressione sui tecnici affinché usino

strumenti di analisi liberi.

In seguito, è necessario sensibilizzare i tecnici per quanto riguarda i principi relativi

alla prova nel processo, tra cui l’importanza del diritto alla difesa, e di un contraddittorio

tecnico approfondito, che presuppongono la possibilità di sapere esattamente come

funziona il software con cui si ricostruiscono i fatti.

In generale, è importante continuare a rendere il software libero più accessibile e

facile da usare, in modo da incentivare la sua adozione, e re-implementare il software

proprietario già esistente, come è successo con FIT116 e FAW.

Infine, sarebbe utile menzionare l’uso del software libero nel codice di procedura,

almeno negli istituti che riguardano l’acquisizione dei dati informatici. Ad esempio,

quando si parla del sequestro di dati informatici, e si richiede l’uso di una “procedura

che assicuri la conformità dei dati acquisiti a quelli originali” (art. 254-bis c.p.p.) si

potrebbe inserire un’espressione come “laddove possibile, con l’uso di software con

codice sorgente aperto”.117

Purtroppo, il recente DDL sul sequestro di dati digitali che propone l’introduzione

dell’art. 254-ter c.p.p.118 non affronta il problema. Si continuano ad usare formule

generiche119 che non menzionano in maniera specifica la necessità di usare il software

libero per l’acquisizione.

La volontà del legislatore di applicare il principio di proporzionalità all’interno

116V. nota 59 a p. 94.
117Volendo, si potrebbe richiedere anche “la consegna di una copia del programma informatico o

sistema operativo usato durante l’acquisizione”, “l’uso di tecniche per verificare la riproducibilità della
compilazione” (le reproducible builds, per dimostrare che il programma non è stato alterato prima
dell’acquisizione), aggiungere una sanzione processuale di inutilizzabilità per le prove informatiche
non acquisite con l’uso di programmi informatici con codice sorgente aperto, ecc.

118Disegno di legge d’iniziativa dei senatori Zanettin e Bongiorno, comunicato alla presidenza il 19
luglio 2023, “Modifiche al codice di procedura penale in materia di sequestro di dispositivi e sistemi
informatici, smartphone e memorie digitali”, v. https://web.archive.org/web/20230725110052/https:
//www.giurisprudenzapenale.com/wp-content/uploads/2023/07/ddl-806__427387.pdf.

119Come “mediante una procedura che assicuri la conformità della copia all’originale e la sua
immodificabilità” (art. 1 co. 2), e “con procedure che assicurino la conformità della copia ai dati fonte e
l’immodificabilità della medesima” (art. 1 co. 6).

106

https://web.archive.org/web/20230725110052/https://www.giurisprudenzapenale.com/wp-content/uploads/2023/07/ddl-806__427387.pdf
https://web.archive.org/web/20230725110052/https://www.giurisprudenzapenale.com/wp-content/uploads/2023/07/ddl-806__427387.pdf

del sequestro120 e l’introduzione di una sanzione di inutilizzabilità espressa (art. 1

co. 7) vanno lodate, ma si deve criticare la formulazione dei casi in cui si applica la

disciplina121 e l’espresso sfavore per la perizia nella procedura.122

120Si prevede che le operazione di selezione dei dati siano svolte in contraddittorio con gli interessati
(co. 2).

121Nell’art. 1 co. 1 si menzionano “dispositivi e sistemi informatici”, “smartphone”, e “memorie digitali”.
Sarebbe stato sufficiente fermarsi alla prima espressione, dato che gli “smartphone” e le “memorie
digitali” (si presuppone che si faccia riferimento ai supporti materiali che contengono dati digitali)
rientrano già in quelle categorie.

122Nell’art. 1 co. 3 si prevede che le operazioni di selezione debbano essere svolte ai sensi dell’art.
360 c.p.p. (“Accertamenti tecnici non ripetibili”). La categorizzazione è corretta (l’acquisizione di un
dispositivo comporta sempre il rischio di modificarlo), ma non si comprende perché il legislatore
precluda categoricamente all’indagato la possibilità di richiedere una perizia. Sacrificare il diritto alla
difesa per garantire che la procedura di sequestro si concluda in tempi rapidi è irragionevole e mette
anche a rischio l’integrità dei dati.

107

108

Bibliografia

Note:

• Se una fonte è disponibile su internet, ma non è immediatamente disponibile al

pubblico, è possibile visualizzarla usando l’accesso istituzionale dell’Università

di Bologna.

• Rivista di Diritto Processuale è consultabile online: https://www.edicolaprofessio

nale.com/RDP.

Apple Inc., «Apple Platform Security», 2022. https://help.apple.com/pdf/security/en

_US/apple-platform-security-guide.pdf.

Ayers, Amy L., «Windows hibernation and memory forensics», Utica College ProQuest

Dissertations Publishing, 2015. https://www.proquest.com/dissertations-theses/w

indows-hibernation-memory-forensics/docview/1676462584/se-2.

Battiato, Sebastiano, Giuseppe Messina, Rosetta Rizzo, «Image forensics.

Contraffazione digitale e identificazione della camera di acquisizione: status e

prospettive», 2014. https://www.researchgate.net/publication/242495487.

Beekmans, Gerard, Linux From Scratch. Version 12.0, Bruce Dubbs (a cura di), 2023.

https://web.archive.org/web/20230901165736/https://www.linuxfromscratch.org/l

fs/view/stable/.

Bilaniuk, Stefan, «Is mathematics a science?», 1996. http://euclid.trentu.ca/math/sb/m

isc/mathsci.html.

109

https://www.edicolaprofessionale.com/RDP
https://www.edicolaprofessionale.com/RDP
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://www.proquest.com/dissertations-theses/windows-hibernation-memory-forensics/docview/1676462584/se-2
https://www.proquest.com/dissertations-theses/windows-hibernation-memory-forensics/docview/1676462584/se-2
https://www.researchgate.net/publication/242495487
https://web.archive.org/web/20230901165736/https://www.linuxfromscratch.org/lfs/view/stable/
https://web.archive.org/web/20230901165736/https://www.linuxfromscratch.org/lfs/view/stable/
http://euclid.trentu.ca/math/sb/misc/mathsci.html
http://euclid.trentu.ca/math/sb/misc/mathsci.html

Blachowicz, James, «How Science Textbooks Treat Scientific Method: A Philosopher’s

Perspective», The British Journal for the Philosophy of Science, vol. 60, fasc. 2, 2009,

pp. 303–344. https://doi.org/10.1093/bjps/axp011.

Blomqvist, Jørgen, Primer on International Copyright and Related Rights, Edward Elgar

Publishing, 2014.

Butler, Simon, Jonas Gamalielsson, Björn Lundell, Christoffer Brax, Anders Mattsson,

Tomas Gustavsson, Jonas Feist, Bengt Kvarnström, Erik Lönroth, «On business

adoption and use of reproducible builds for open and closed source software»,

Software Quality Journal, vol. 31, fasc. 3, settembre 2023, pp. 687–719. https://doi.

org/10.1007/s11219-022-09607-z.

Caneschi, Gaia, «Le nuove indagini tecnologiche e la tutela dei diritti fondamentali.

L’esperienza del captatore informatico», Diritto Penale Contemporaneo, fasc. 2,

2019, pp. 417–429. https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/

DPC_Riv_Trim_2_2019_caneschi.pdf.

Canestrari, Stefano et al., Diritto penale. Lineamenti di parte speciale, Monduzzi

Editoriale, 2016.

Case, Andrew, Golden G. Richard, «Memory forensics: The path forward», Digital

Investigation, vol. 20, 2017, pp. 23–33. https://www.sciencedirect.com/science/arti

cle/pii/S1742287616301529.

Casey, Eoghan, Digital Evidence and Computer Crime: Forensic Science, Computers, and

the Internet, USA, Academic Press, Inc., 2011.

Cassazione Penale, Quarta Sezione, «Sent. n. 43786/2010», 2010. https://web.archiv

e.org/web/20211128212823/https://olympus.uniurb.it/index.php?option=com

_content&view=article&id=3919:cassazione-penale-sez-4-13-dicembre-2010-n-

43786&catid=17&Itemid=138.

Cassazione Penale, Quinta Sezione, «Sent. n. 1801/2022», 2022. https://web.archive.or

g/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/cl

ean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n0180

110

https://doi.org/10.1093/bjps/axp011
https://doi.org/10.1007/s11219-022-09607-z
https://doi.org/10.1007/s11219-022-09607-z
https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2019_caneschi.pdf
https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2019_caneschi.pdf
https://www.sciencedirect.com/science/article/pii/S1742287616301529
https://www.sciencedirect.com/science/article/pii/S1742287616301529
https://web.archive.org/web/20211128212823/https://olympus.uniurb.it/index.php?option=com_content&view=article&id=3919:cassazione-penale-sez-4-13-dicembre-2010-n-43786&catid=17&Itemid=138
https://web.archive.org/web/20211128212823/https://olympus.uniurb.it/index.php?option=com_content&view=article&id=3919:cassazione-penale-sez-4-13-dicembre-2010-n-43786&catid=17&Itemid=138
https://web.archive.org/web/20211128212823/https://olympus.uniurb.it/index.php?option=com_content&view=article&id=3919:cassazione-penale-sez-4-13-dicembre-2010-n-43786&catid=17&Itemid=138
https://web.archive.org/web/20211128212823/https://olympus.uniurb.it/index.php?option=com_content&view=article&id=3919:cassazione-penale-sez-4-13-dicembre-2010-n-43786&catid=17&Itemid=138
https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf
https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf
https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf
https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf

1@tS.clean.pdf.

———, «Sent. n. 36080/2015», 2015. https://web.archive.org/web/20171104040843/https:

//www.giurisprudenzapenale.com/wp-content/uploads/2015/09/cass-pen-2015-

36080.pdf.

Chacon, Scott, Ben Straub, «Pro Git. Version 2.1.413», 2023. https://web.archive.org/

web/20231223152842/https://github.com/progit/progit2/releases/download/2.1.41

3/progit.pdf.

Cinti, Mariagrazia, «Quantificazione ed individuazione delle alterazioni dei dati

nell’ambito di indagini di Informatica Forense», AlmaMater Studiorum – Università

di Bologna, 2011. http://amslaurea.unibo.it/2736/.

Clarich, Marcello, Manuale di diritto amministrativo, Società editrice il Mulino, 2022.

Conso, Giovanni, Marta Bargis, Vittorio Grevi, Compendio di procedura penale, CEDAM,

2020.

Court of Appeals of District of Columbia, «Frye v. United States, 293 F. 1013 (D.C. Cir.

1923)», 1923. https://web.archive.org/web/20230202073721/https://nij.ojp.gov/site

s/g/files/xyckuh171/files/media/document/frye-v-US.pdf.

Diaz, Antonio Diaz, «GNU ddrescue Manual», 2023. https://web.archive.org/web/2024

0109210952/https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.h

tml.

Dolstra, Eelco, «The purely functional software deploymentmodel», Utrecht University,

2006. https://dspace.library.uu.nl/handle/1874/7540.

Dolstra, Eelco, Andres Löh, «NixOS: a purely functional Linux distribution», 2008.

https://github.com/edolstra/edolstra.github.io/blob/2eed3fdbff656d01fe5372e9bf32

2799de0eaba7/pubs/nixos-icfp2008-submitted.pdf.

Feenberg, Daniel, «Can Intelligence Agencies Read Overwritten Data?», 2013. https:

//back.nber.org/sys-admin/overwritten-data-guttman.html.

Ferrazzano, Michele, «Indagini forensi in tema di scambio di file pedopornografici

mediante software di file sharing a mezzo peer-to-peer», Alma Mater Studiorum –

111

https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf
https://web.archive.org/web/20231222154506/https://www.italgiure.giustizia.it/xway/application/nif/clean/hc.dll?verbo=attach&db=snpen&id=./20220117/snpen@s50@a2022@n01801@tS.clean.pdf
https://web.archive.org/web/20171104040843/https://www.giurisprudenzapenale.com/wp-content/uploads/2015/09/cass-pen-2015-36080.pdf
https://web.archive.org/web/20171104040843/https://www.giurisprudenzapenale.com/wp-content/uploads/2015/09/cass-pen-2015-36080.pdf
https://web.archive.org/web/20171104040843/https://www.giurisprudenzapenale.com/wp-content/uploads/2015/09/cass-pen-2015-36080.pdf
https://web.archive.org/web/20231223152842/https://github.com/progit/progit2/releases/download/2.1.413/progit.pdf
https://web.archive.org/web/20231223152842/https://github.com/progit/progit2/releases/download/2.1.413/progit.pdf
https://web.archive.org/web/20231223152842/https://github.com/progit/progit2/releases/download/2.1.413/progit.pdf
http://amslaurea.unibo.it/2736/
https://web.archive.org/web/20230202073721/https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/frye-v-US.pdf
https://web.archive.org/web/20230202073721/https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/frye-v-US.pdf
https://web.archive.org/web/20240109210952/https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.html
https://web.archive.org/web/20240109210952/https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.html
https://web.archive.org/web/20240109210952/https://www.gnu.org/software/ddrescue/manual/ddrescue_manual.html
https://dspace.library.uu.nl/handle/1874/7540
https://github.com/edolstra/edolstra.github.io/blob/2eed3fdbff656d01fe5372e9bf322799de0eaba7/pubs/nixos-icfp2008-submitted.pdf
https://github.com/edolstra/edolstra.github.io/blob/2eed3fdbff656d01fe5372e9bf322799de0eaba7/pubs/nixos-icfp2008-submitted.pdf
https://back.nber.org/sys-admin/overwritten-data-guttman.html
https://back.nber.org/sys-admin/overwritten-data-guttman.html

Università di Bologna, 2014. http://amsdottorato.unibo.it/6697/.

Free Software Foundation, «GNUCoreutils», 2023. https://web.archive.org/web/202402

05001115/https://www.gnu.org/software/coreutils/manual/html_node/index.html.

———, «GNU General Public License, Version 3, 29 June 2007», 2007. https://www.gnu.

org/licenses/gpl-3.0-standalone.html.

———, «How to Choose a License for Your Own Work», 2022. https://web.archive.org/

web/20220127041134/https://www.gnu.org/licenses/license-recommendations.ht

ml.

———, «The GNU C Library Reference Manual, for version 2.38», 2023. https://web.ar

chive.org/web/20231227043035/https://sourceware.org/glibc/manual/pdf/libc.pdf.

———, «Various Licenses and Comments about Them», 2023. https://web.archive.org/

web/20231018041504/https://www.gnu.org/licenses/license-list.html.

———, «What is Free Software?», 2023. https://web.archive.org/web/20231230224545/h

ttps://www.gnu.org/philosophy/free-sw.en.html.

Gabriel, Richard P., «Lisp: Good News, Bad News, How to Win Big», 2000. https:

//web.archive.org/web/20070706112430/https://www.dreamsongs.com/Files/LispG

oodNewsBadNews.pdf.

Gammarota, Antonio, «Informatica forense e processo penale: la prova digitale tra

innovazione normativa e incertezze giurisprudenziali», Alma Mater Studiorum –

Università di Bologna, 2016. http://amsdottorato.unibo.it/7723/.

Geraci, Antonino, «I contratti di licenza d’uso del software», Università degli Studi di

Parma, 2015. https://www.repository.unipr.it/handle/1889/2715.

Gutmann, Peter, «Secure Deletion of Data from Magnetic and Solid-State Memory»,

1996. https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_

papers/gutmann/index.html.

Hargreaves, Christopher, Howard Chivers, «Recovery of Encryption Keys from

Memory Using a Linear Scan123», 2008 Third International Conference on

123https://doi.org/10.1109/ARES.2008.109

112

http://amsdottorato.unibo.it/6697/
https://web.archive.org/web/20240205001115/https://www.gnu.org/software/coreutils/manual/html_node/index.html
https://web.archive.org/web/20240205001115/https://www.gnu.org/software/coreutils/manual/html_node/index.html
https://www.gnu.org/licenses/gpl-3.0-standalone.html
https://www.gnu.org/licenses/gpl-3.0-standalone.html
https://web.archive.org/web/20220127041134/https://www.gnu.org/licenses/license-recommendations.html
https://web.archive.org/web/20220127041134/https://www.gnu.org/licenses/license-recommendations.html
https://web.archive.org/web/20220127041134/https://www.gnu.org/licenses/license-recommendations.html
https://web.archive.org/web/20231227043035/https://sourceware.org/glibc/manual/pdf/libc.pdf
https://web.archive.org/web/20231227043035/https://sourceware.org/glibc/manual/pdf/libc.pdf
https://web.archive.org/web/20231018041504/https://www.gnu.org/licenses/license-list.html
https://web.archive.org/web/20231018041504/https://www.gnu.org/licenses/license-list.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20231230224545/https://www.gnu.org/philosophy/free-sw.en.html
https://web.archive.org/web/20070706112430/https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf
https://web.archive.org/web/20070706112430/https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf
https://web.archive.org/web/20070706112430/https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf
http://amsdottorato.unibo.it/7723/
https://www.repository.unipr.it/handle/1889/2715
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/gutmann/index.html
https://www.usenix.org/legacy/publications/library/proceedings/sec96/full_papers/gutmann/index.html
https://doi.org/10.1109/ARES.2008.109

Availability, Reliability and Security, 1369–1376, 2008.

Holzmann, Gerard J., «The Power of 10: Rules for Developing Safety-Critical Code»,

2006. https://ieeexplore.ieee.org/document/1642624.

Huebner, Eva, Stefano Zanero, Open Source Software for Digital Forensics, Springer

Science+Business Media, 2010.

Leurent, Gaëtan, Thomas Peyrin, «SHA-1 is a Shambles: First Chosen-Prefix Collision

on SHA-1 and Application to the PGP Web of Trust», 2020. https://www.usenix.o

rg/system/files/sec20-leurent.pdf.

Maldonato, Lucia, «Algoritmi predittivi e discrezionalità del giudice: una nuova sfida

per la giustizia penale», Diritto Penale Contemporaneo, fasc. 2, 2019, pp. 401–416.

https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2

019_maldonato.pdf.

Manson, Dan, Anna Carlin, Steve Ramos, Alain Gyger, Matthew Kaufman, Jeremy

Treichelt, «Is the Open Way a Better Way? Digital Forensics Using Open Source

Tools124», 2007 40th Annual Hawaii International Conference on System Sciences

(HICSS’07), 2007.

Marinucci, Giorgio, Emilio Dolcini, Gian Luigi Gatta, Manuale di Diritto Penale. Parte

Generale. Nona edizione, Giuffrè Francis Lefebvre, 2020.

Miller, Barton P., Mengxiao Zhang, Elisa R. Heymann, «The Relevance of Classic Fuzz

Testing: Have We Solved This One?», IEEE Transactions on Software Engineering,

vol. 48, fasc. 6, 2022, pp. 2028–2039. https://ieeexplore.ieee.org/abstract/document/

9309406.

National Institute of Standards and Technology, «Secure Hash Standard (SHS)», 2015.

http://dx.doi.org/10.6028/NIST.FIPS.180-4.

Nugent, Hugh, «State Computer Crime Statutes», 1991. https://www.ojp.gov/ncjrs/vi

rtual-library/abstracts/state-computer-crime-statutes.

Open Source Initiative, «OSI Approved Licenses», 2024. https://web.archive.org/web/

124https://doi.org/10.1109/HICSS.2007.301

113

https://ieeexplore.ieee.org/document/1642624
https://www.usenix.org/system/files/sec20-leurent.pdf
https://www.usenix.org/system/files/sec20-leurent.pdf
https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2019_maldonato.pdf
https://dpc-rivista-trimestrale.criminaljusticenetwork.eu/pdf/DPC_Riv_Trim_2_2019_maldonato.pdf
https://ieeexplore.ieee.org/abstract/document/9309406
https://ieeexplore.ieee.org/abstract/document/9309406
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://www.ojp.gov/ncjrs/virtual-library/abstracts/state-computer-crime-statutes
https://www.ojp.gov/ncjrs/virtual-library/abstracts/state-computer-crime-statutes
https://web.archive.org/web/20240106034506/https://opensource.org/licenses/
https://web.archive.org/web/20240106034506/https://opensource.org/licenses/
https://doi.org/10.1109/HICSS.2007.301
https://web.archive.org/web/20240106034506/https://opensource.org/licenses/

20240106034506/https://opensource.org/licenses/.

———, «The Open Source Definition», 2007. https://web.archive.org/web/2023123115

2615/https://opensource.org/osd/.

Ousterhout, John K., «Scripting: Higher Level Programming for the 21st Century»,

1998. https://ieeexplore.ieee.org/document/660187.

Pasini, Manuele, «Programmazione memory-safe senza garbage collection: il caso del

linguaggio Rust», Alma Mater Studiorum – Università di Bologna, 2019.

Raymond, Eric Steven, The Art of Unix Programming, Addison-Wesley, 2003. http:

//www.catb.org/esr/writings/taoup/html/.

Renzetti, Silvia, «La prova scientifica nel processo penale: problemi e prospettive»,

Rivista di Diritto Processuale, vol. 75, fasc. 2, 2015, pp. 399–423.

Stallman, Richard, «For Clarity’s Sake, Please Don’t Say ”Licensed under GNU GPL

2”!», 2022. https://web.archive.org/web/20220219074031/https://www.gnu.org/lice

nses/identify-licenses-clearly.html.

———, «License Compatibility and Relicensing», 2021. https://www.gnu.org/licenses/l

icense-compatibility.html.en.

———, «Linux and the GNU System», 2021. https://web.archive.org/web/202111091229

24/http://www.gnu.org/gnu/linux-and-gnu.en.html.

———, «Selling Exceptions to the GNU GPL», 2021. https://www.gnu.org/philosophy/s

elling-exceptions.html.

Stallman, Richard, Bruno Haible, «Why CLISP is under GPL», 2000. https://gitlab.com

/gnu-clisp/clisp/-/blob/master/doc/Why-CLISP-is-under-GPL.

Supreme Court of the United States, «Daubert v. Merrell Dow Pharmaceuticals, Inc.,

509 U.S. 579 (1993)», 1993. https://web.archive.org/web/20221012193634/https://tile

.loc.gov/storage-services/service/ll/usrep/usrep509/usrep509579/usrep509579.pdf.

Sylve, Joe T., Vico Marziale, Golden G. Richard, «Modern windows hibernation file

analysis», Digital Investigation, vol. 20, 2017, pp. 16–22. https://www.sciencedirect.

com/science/article/pii/S1742287616301487.

114

https://web.archive.org/web/20240106034506/https://opensource.org/licenses/
https://web.archive.org/web/20240106034506/https://opensource.org/licenses/
https://web.archive.org/web/20231231152615/https://opensource.org/osd/
https://web.archive.org/web/20231231152615/https://opensource.org/osd/
https://ieeexplore.ieee.org/document/660187
http://www.catb.org/esr/writings/taoup/html/
http://www.catb.org/esr/writings/taoup/html/
https://web.archive.org/web/20220219074031/https://www.gnu.org/licenses/identify-licenses-clearly.html
https://web.archive.org/web/20220219074031/https://www.gnu.org/licenses/identify-licenses-clearly.html
https://www.gnu.org/licenses/license-compatibility.html.en
https://www.gnu.org/licenses/license-compatibility.html.en
https://web.archive.org/web/20211109122924/http://www.gnu.org/gnu/linux-and-gnu.en.html
https://web.archive.org/web/20211109122924/http://www.gnu.org/gnu/linux-and-gnu.en.html
https://www.gnu.org/philosophy/selling-exceptions.html
https://www.gnu.org/philosophy/selling-exceptions.html
https://gitlab.com/gnu-clisp/clisp/-/blob/master/doc/Why-CLISP-is-under-GPL
https://gitlab.com/gnu-clisp/clisp/-/blob/master/doc/Why-CLISP-is-under-GPL
https://web.archive.org/web/20221012193634/https://tile.loc.gov/storage-services/service/ll/usrep/usrep509/usrep509579/usrep509579.pdf
https://web.archive.org/web/20221012193634/https://tile.loc.gov/storage-services/service/ll/usrep/usrep509/usrep509579/usrep509579.pdf
https://www.sciencedirect.com/science/article/pii/S1742287616301487
https://www.sciencedirect.com/science/article/pii/S1742287616301487

TAR Campania, Napoli, Sez. III, «Sent. n. 7003/2022», 2022. https://web.archive.org/

web/20231222125832/https://portali.giustizia-amministrativa.it/portale/pages/isti

tuzionale/visualizza?nodeRef=&schema=tar_na&nrg=202105119&nomeFile=2022

07003_01.html&subDir=Provvedimenti.

Thompson, Ken, «Reflections on trusting trust», Commun. ACM, vol. 27, fasc. 8, agosto

1984, pp. 761–763. https://doi.org/10.1145/358198.358210.

Tridgell, Andrew, Paul Mackerras, «The rsync algorithm», 1998. https://web.archive.

org/web/20240124111006/https://rsync.samba.org/tech_report/tech_report.html.

Wolbe, Miles, «Can data be recovered from a zero-filled hard drive?», 2018. https:

//tinyapps.org/docs/recovering_data_from_zero_filled_hard_drive.html.

Wu, Quishi, Kangjie Lu, «On the Feasibility of Stealthily Introducing Vulnerabilities

in Open-Source Software via Hypocrite Commits», 2021. https://web.archive.org/

web/20210928192905/http://www.coding-guidelines.com/code-data/OpenSourceI

nsecurity.pdf.

115

https://web.archive.org/web/20231222125832/https://portali.giustizia-amministrativa.it/portale/pages/istituzionale/visualizza?nodeRef=&schema=tar_na&nrg=202105119&nomeFile=202207003_01.html&subDir=Provvedimenti
https://web.archive.org/web/20231222125832/https://portali.giustizia-amministrativa.it/portale/pages/istituzionale/visualizza?nodeRef=&schema=tar_na&nrg=202105119&nomeFile=202207003_01.html&subDir=Provvedimenti
https://web.archive.org/web/20231222125832/https://portali.giustizia-amministrativa.it/portale/pages/istituzionale/visualizza?nodeRef=&schema=tar_na&nrg=202105119&nomeFile=202207003_01.html&subDir=Provvedimenti
https://web.archive.org/web/20231222125832/https://portali.giustizia-amministrativa.it/portale/pages/istituzionale/visualizza?nodeRef=&schema=tar_na&nrg=202105119&nomeFile=202207003_01.html&subDir=Provvedimenti
https://doi.org/10.1145/358198.358210
https://web.archive.org/web/20240124111006/https://rsync.samba.org/tech_report/tech_report.html
https://web.archive.org/web/20240124111006/https://rsync.samba.org/tech_report/tech_report.html
https://tinyapps.org/docs/recovering_data_from_zero_filled_hard_drive.html
https://tinyapps.org/docs/recovering_data_from_zero_filled_hard_drive.html
https://web.archive.org/web/20210928192905/http://www.coding-guidelines.com/code-data/OpenSourceInsecurity.pdf
https://web.archive.org/web/20210928192905/http://www.coding-guidelines.com/code-data/OpenSourceInsecurity.pdf
https://web.archive.org/web/20210928192905/http://www.coding-guidelines.com/code-data/OpenSourceInsecurity.pdf

116

	Ringraziamenti
	Introduzione
	Approccio scientifico all’informatica forense e alla prova informatica
	Definizione di informatica forense
	Ambiti di rilevanza dell’informatica forense
	Diritto penale sostanziale
	Diritto processuale penale
	Altre branche del diritto

	Problemi dell’informatica forense
	Rigore scientifico nell’informatica forense
	Prova informatica e perizia

	Software libero come modello ideale per l’informatica forense
	Esigenze del software per l’informatica forense
	Acquisizione dei dati informatici
	Conservazione dei dati informatici
	Catena di custodia
	Analisi e valutazione dei dati informatici
	Presentazione delle conclusioni e contraddittorio

	Inquadramento legale e tecnico del software
	Definizione di software libero
	Codice sorgente e codice macchina
	Software e l.d.a.
	Licenze d’uso del software libero nell’ordinamento italiano
	Licenza GPL

	Confronto fra software proprietario e libero
	Accesso al codice sorgente
	Libertà di riprodurre ed eseguire il programma
	Libertà di modificare il programma
	Altre caratteristiche
	Impossibilità di usare il software libero per i captatori

	Sviluppo di software scientifico libero
	Fattori di valutazione del software
	Rilevanza per i giuristi
	Linguaggio di programmazione
	Documentazione del codice
	Uso di codice di terze parti
	Controlli di qualità
	Riproducibilità e distribuzione del codice

	Buone pratiche di sviluppo
	Rilevanza per i giuristi
	Progettazione del software
	Scelta di una licenza libera
	Sistemi di controllo di versione
	Contribuzioni di terze parti
	Sviluppo trasparente del software

	Software libero per l’informatica forense
	Uso del software libero nella pratica
	Sistema operativo libero
	Software libero per acquisire i dati
	Software libero per conservare i dati
	Software libero per analizzare i dati

	Conclusioni
	Bibliografia

